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Steklov spectrum

(M, g): compact connected Riemannian manifold of dimension d
with boundary ∂M.

The Dirichlet-to-Neumann map

Λg ∈ B(H1/2(∂M), H−1/2(∂M)),

is defined by :
Λgψ = (∂νu)|∂M ,

where u solves the Dirichlet problem :{
−4gu = 0, on M,
u = ψ, on ∂M,

The DN map is an elliptic selfadjoint pseudo-differential operator of
order 1 on L2(∂M, dSg ). Therefore, the DN map has a real and
discrete spectrum called the Steklov spectrum

0 = σ0 < σ1 ≤ σ2 ≤ · · · ≤ σk →∞.
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The inverse Steklov problem

What amount of informations on (M, g) is contained in the Steklov
spectrum (σk)k≥0?



The inverse Steklov problem
Weyl’s law :

σk = 2π
( k

Vol(Bd−1)Volg (∂M)

) 1
d−1

+ O(1).

The dimension d and the volume Volg (M) are Steklov spectral
invariants
Heat trace [Polterovich, Sher, (2015)]:

∞∑
k=0

e−tσk = Tr(e−tΛg ) =
∞∑
k=0

akt
−n+1+k +

∞∑
l=1

bl t
l log t.

For instance, the Steklov spectral invariant a1 gives the total mean
curvature of ∂M.
In dimension 2, the number and the lengths of the connected
components of the boundary ∂M are also Steklov spectral invariants
[Girouard, Parnovski, Polterovich, Sher, (2014)].
Can one hear the shape of a drum? (existence of non isometric
manifolds with the same Steklov spectrum by [Gordon, Herbrich,
Webb, (2018)]).
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Another motivation: the Calderón conjecture

Does the DN map Λg determine uniquely the metric g modulo
pullback of g by diffeomorphisms that preserve the boundary (and
conformal scalings in dimension 2)?

Medical imaging (Electrical Impedance Tomography).

The Calderon conjecture was solved positively :
I in dimension 2 for C∞ metrics,
I in higher dimensions for real analytic Cw metrics,

but remains an open problem (in general) in dimensions higher than 3
for C∞ metrics.
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The geometric model of deformed balls

We consider warped products (M, g)

M = (0, 1]× Sd−1, g = c4(r)[dr2 + r2gS].

where
I gS is a fixed smooth Riemannian metric on Sd−1.
I c is a positive radial Cm-function with m ≥ 2 (and c(0) = 1).

The metrics g are generally not regular at r = 0, unless
c(2k+1)(0) = 0 and gS = dΩ2 where dΩ2 is the round metric on
Sd−1.

We also work with x = − log r ∈ [0,+∞), so that

g = f 4(x)[dx2 + gS], f (x) = c(e−x)e−
x
2 .
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Construction of the Steklov spectrum

Use the symmetry of the warped product in order to diagonalize the
DN map onto the Hilbert basis of the normalized eigenfunctions
{Yk}k≥0 of −∆gS , i.e.

−∆gSYk = µkYk , ∀k ≥ 0,

where
0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µk →∞

are the ordered eigenvalues of −∆gS .

On each harmonic Yk , the DN map acts essentially as an operator of
multiplication by the Weyl-Titchmarsh function associated to the
countable family of Schrödinger operators arising from the separation
of variables procedure.
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Separation of variables

In the coordinate system (x , ω), the Laplace equation −∆gu = 0
reads

[−∂2
x −4gS + qf (x)]v = −(d − 2)2

4
v , v = f d−2u,

where

qf (x) =
(f d−2)′′(x)

f d−2(x)
− (d − 2)2

4
= O(e−px), x →∞.

We look for solutions of the form v =
∞∑
k=0

vk(x)Yk . Then ∀k ≥ 0,

−v ′′k + qf (x)vk = −κ2
kvk , x ∈ [0,∞),

where

κk =

√
µk +

(d − 2)2

4
, ∀k ≥ 0.
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The Weyl-Titchmarsh function
Consider the Schrödinger equation:

−v ′′ + qf (x)v = zv , x ∈ [0,∞).

Let {C0(x , z), S0(x , z)} be the FSS defined by :

C0(0, z) = 1, C ′0(0, z) = 0, S0(0, z) = 0, S ′0(0, z) = 1.

For any z ∈ C \ R, there exists a unique solution S∞(x , z) that is L2

in a neighbourhood of x =∞. Write this function as

S∞(x , z) = ∆q(z)
(
C0(x , z)−Mq(z)S0(x , z)

)
.

The characteristic function ∆q(z) and the Weyl-Titchmarsh function
Mq(z) are given by :

∆q(z) = W (S∞(x , z),S0(x , z)),

Mq(z) = −W (C0(x , z), S∞(x , z))

W (S0(x , z),S∞(x , z))
=

S ′∞(0, z)

S∞(0, z)
.
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A precise formula for the Steklov spectrum

The DN map can be diagonalized onto the Hilbert basis of harmonics
{Yk}k≥0. If we represent the Dirichlet data as ψ =

∑
k≥0 ψkYk , then

the global DN map has the expression

Λgψ =
∞∑
k=0

(Λk
gψk)Yk ,

where

Λk
gψk =

(
(d − 2)f ′(0)

f 3(0)
−

Mq(−κ2
k)

f 2(0)

)
ψk .

As a consequence, we infer that the Steklov spectrum of (M, g) is
given by :

σk =
(d − 2)f ′(0)

f 3(0)
−

Mq(−κ2
k)

f 2(0)
, ∀k ≥ 0.



Main results

Theorem 1

Assume that c ∈ C∞([0, 1]). Then the Steklov spectrum (σk)k≥0 satisfies
for all N ∈ N,

σk =
(d − 2)f ′(0)

f 3(0)
+

κk
f 2(0)

+
N∑
j=0

βj(0)

f 2(0)
κ−j−1
k + O(κ−N−2

k ),

as k →∞, where
β0(x) = 1

2qf (x),

βj+1(x) =
1

2
β′j(x) +

1

2

j∑
l=0

βl(x)βj−l(x).



Some remarks

Since µk and thus κk satisfy the usual Weyl law:

κk = 2π

(
k

Vol(Bd−1)VolgS(S)

) 1
d−1

+ O(1) ,

as k →∞, the Steklov spectrum satisfies the expected Weyl law.

The coefficients βj(0), j ≥ 0 depend only on the derivatives

q
(l)
f (0), l = 0, . . . , j up to order j . Hence the values f (0), f ′(0) and

the Taylor series at 0 of the effective potential qf give the leading
terms of the asymptotics of the Steklov spectrum in inverse powers of
κk .
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Uniqueness results

Corollary 2

If the warping function c is analytic on [0, 1], then the Steklov spectrum of
(M, g) determines uniquely the warping function c.

This leads to the question: does the Steklov spectrum determine uniquely
the warping function c without assuming analyticity of c ? The answer is
yes:

Theorem 3

Let (M, g) and (M, g̃) be Riemannian manifolds of the form

g = c4(r)[dr2 + r2gS], g̃ = c̃4(r)[dr2 + r2gS]

Then σk = σ̃k , ∀k ≥ 0 implies that c = c̃ .



Uniqueness results

Corollary 2

If the warping function c is analytic on [0, 1], then the Steklov spectrum of
(M, g) determines uniquely the warping function c.

This leads to the question: does the Steklov spectrum determine uniquely
the warping function c without assuming analyticity of c ? The answer is
yes:

Theorem 3

Let (M, g) and (M, g̃) be Riemannian manifolds of the form

g = c4(r)[dr2 + r2gS], g̃ = c̃4(r)[dr2 + r2gS]

Then σk = σ̃k , ∀k ≥ 0 implies that c = c̃ .



Uniqueness results

Corollary 2

If the warping function c is analytic on [0, 1], then the Steklov spectrum of
(M, g) determines uniquely the warping function c.

This leads to the question: does the Steklov spectrum determine uniquely
the warping function c without assuming analyticity of c ? The answer is
yes:

Theorem 3

Let (M, g) and (M, g̃) be Riemannian manifolds of the form

g = c4(r)[dr2 + r2gS], g̃ = c̃4(r)[dr2 + r2gS]

Then σk = σ̃k , ∀k ≥ 0 implies that c = c̃ .



A local uniqueness inverse result

We actually have a better local uniqueness result. Precisely

Theorem 4

Let (M, g) and (M, g̃) be Riemannian manifolds with

g = c4(r)[dr2 + r2gS], g̃ = c̃4(r)[dr2 + r2gS]

Then, for a positive constant a > 0, the two following assertions are
equivalent:

σkd−1 − σ̃kd−1 = O(e−2aκ
kd−1 ), k →∞.

c(r) = c̃(r), ∀r ∈ [e−a, 1].



Some remarks

The question of whether the Steklov spectrum determines uniquely
the warping function without the additional knowledge of the
transversal Riemannian manifold (Sn−1, gS) is false in general
(isospectral (S, gS)).

The above result is a weak form of a stability result: the asymptotic
behaviour of the Steklov spectrum allows one to determine the
warping function c in a neighbourhood of the boundary r = 1.

In contrast, we shall see that the first Steklov eigenvalues determine
in a stable way the warping function c on [0, 1].
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The set of admissible warping functions

Define the set Cm,p(A) of admissible warping functions c(r) where

A is any positive constant,

m ≥ 3,

2 ≤ p ≤ m − 1,

by requiring that c ∈ Cm([0, 1]), c(k)(0) = 0 for k = 1, . . . , p − 1 and

‖c‖Cm([0,1]) + ‖1

c
‖Cm([0,1]) ≤ A .

If c ∈ Cm,p(A), the effective potential qf satisfies the uniform estimates:

|q(k)
f (x)| ≤ CA e−px ,∀x ≥ 0, ∀k = 0, ...,m − 2,

where the constant CA depends only on A.
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Stability for regular deformed balls

Assume that the metric g is regular, i.e. we assume c(2k+1)(0) = 0, and
gS = dΩ2:

Theorem 5

Let c, c̃ ∈ Cm,p(A) where A > 0 is fixed. Assume that for some ε > 0 one
has:

sup
k≥0
|σk − σ̃k | ≤ ε.

Then, there exists a positive constant CA, depending only on A such that,

‖c − c̃‖L∞(0,1) ≤ CA

(
1

log( 1
ε )

)p−1

This result is reminiscent of the logarithmic stability estimates obtained by
Alessandrini (1988) and Novikov (2011) for Schrödinger operators on
bounded domains M in Rd from the whole DN map.



Stability for singular deformed balls

Theorem 6

Let c, c̃ ∈ Cm,p(A) where A > 0 is fixed. Assume that for some ε > 0 one
has:

sup
k≥0
|σk − σ̃k | ≤ ε.

Then, there exists θ ∈ (0, 1) and a positive constant CA, depending only
on A such that,

‖c − c̃‖L∞(0,1) ≤ CA

(
1

log( 1
ε )

)(p−1)θ



The formula for the Steklov spectrum

Recall that

σk =
(d − 2)f ′(0)

f 3(0)
−

Mq(−κ2
k)

f 2(0)
, ∀k ≥ 0,

where

Mq si the WT function of

−v ′′ + qf (x)v = −κ2
ky , x ∈ [0,∞),

κ2
k are the shifted eigenvalues of −∆gS :

κ2
k = µk +

(d − 2)2

4
, ∀k ≥ 0.



Some facts concerning the Weyl-Titchmarsh functions Mq

Theorem 7 (Simon, 1999)

There exists a function A on [0,∞) with the same smoothness as qf s.t.

|A(α)− qf (α)| ≤ Q(α)2eαQ(α), Q(α) =

∫ α

0
|qf (s)|ds,

such that, if Re(κ) > 1
2‖qf ‖L1 , then

M(−κ2) = −κ−
∫ ∞

0
A(α)e−2καdα.

Theorem 8 (Simon, 1999)

The potential qf on [0, a] is a function of A on [0, a]. Explicitly, if qf and
q̃f are two potentials, let A and Ã be their A-functions. Then

A(α) = Ã(α), ∀α ∈ [0, a] ⇐⇒ qf (x) = q̃f (x), ∀x ∈ [0, a].



Some facts concerning the Weyl-Titchmarsh functions Mq

Theorem 7 (Simon, 1999)

There exists a function A on [0,∞) with the same smoothness as qf s.t.

|A(α)− qf (α)| ≤ Q(α)2eαQ(α), Q(α) =

∫ α

0
|qf (s)|ds,

such that, if Re(κ) > 1
2‖qf ‖L1 , then

M(−κ2) = −κ−
∫ ∞

0
A(α)e−2καdα.

Theorem 8 (Simon, 1999)

The potential qf on [0, a] is a function of A on [0, a]. Explicitly, if qf and
q̃f are two potentials, let A and Ã be their A-functions. Then

A(α) = Ã(α), ∀α ∈ [0, a] ⇐⇒ qf (x) = q̃f (x), ∀x ∈ [0, a].



The asymptotics of the Steklov spectrum

By integration by parts, we get the asymptotics of the Steklov spectrum
σk , i.e. if c ∈ C∞([0, 1]), then (σk)k≥0 satisfies for all N ∈ N,

σk =
(d − 2)f ′(0)

f 3(0)
+

κk
f 2(0)

+
N∑
j=0

βj(0)

f 2(0)
κ−j−1
k + O(κ−N−2

k ),

as k →∞, where
β0(x) = 1

2qf (x),

βj+1(x) =
1

2
β′j(x) +

1

2

j∑
l=0

βl(x)βj−l(x).



Proof of local uniqueness

Assume that

σkd−1 − σ̃kd−1 = O(e−2aκ
kd−1 ), k →∞.

The asymptotics on σk entail f (0) = f̃ (0), f ′(0) = f̃ ′(0).

Hence our assumption reads

M(−κ2
kd−1)− M̃(−κ2

kd−1) = O(e−2aκ
kd−1 ), k →∞.

Using the Simon representation, we get∫ a

0

[
A(α)− Ã(α)

]
e−2κ

kd−1αdα = O(e−2aκ
kd−1 ), k →∞.
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From discrete to continuous angular momenta

Proposition 9 (Simon, 1999)

Let f ∈ L1(0, a). Assume that∫ a

0
e−xt f (t) dt = O(e−ax), x → +∞.

Then, f = 0 almost everywhere on (0, a).

Proposition 10 (The discrete case)

Let f ∈ L1(0, a). Assume that∫ a

0
e−κkd−1 t f (t) dt = O(e−aκkd−1 ) , k → +∞.

Then, f = 0 almost everywhere on (0, a).
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Sketch of proof
Setting νk = 1

cd−1N
κ(kN)d−1 , we get from the Weyl law

|νk − k| ≤ C

N
<

1

4
, for N large enough.

Setting b = cd−1Na, and g(y) = f (
y

cd−1N
)∫ b

0
g(y)e−νky dy = O(e−bνk ), k → +∞,

Define for z ∈ C+, F (z) = ebz
∫ b

0 g(y)e−zy dy . Then

|F (z)| ≤ ||g ||1 ebRe(z)

It follows from F (νk) = O(1) and a theorem of Duffin and Schaeffer
that F (x) is bounded for x > 0, i.e.∫ b

0
g(y)e−xy dy = O(e−bx) , x → +∞.
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The stability result in the regular case

Assume that |σk − σ̃k | < ε for all k ≥ 0.

By letting k → +∞ in the asymptotics of σk , we deduce that
f (0) = f̃ (0), and also∣∣∣∣∣(d − 2)f ′(0)

f 3(0)
− (d − 2)f̃ ′(0)

f̃ 3(0)

∣∣∣∣∣ ≤ ε.
Hence we obtain :

|M̃(−κ2
k)−M(−κ2

k)| ≤ 2f 2(0) ε ≤ 2A2 ε, ∀k ≥ 0,

where κk = k + d−2
2 .
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The Marchenko representation for S∞

We express the Weyl solution S∞(x , z) as :

Lemma 11

Assume that c ∈ Cm,p(A). Then, there exists a Cm−1 function K (x , t) for
0 ≤ x ≤ t <∞, satisfying the properties:

S∞(x ,−κ2) = e−κx +

∫ +∞

x
K (x , t)e−κt dt , κ > 0.

K (x , x) =
1

2

∫ +∞

x
qf (t) dt.

Moreover, there exists a constant CA > 0 depending only on A such that,

|∂kx ∂ ltK (x , t)| ≤ CA e−
p
2

(x+t) , ∀k, l ≤ m − 1.



Another representation formula

For κ sufficiently large, we have:

S∞(0,−κ2)S̃∞(0,−κ2)
(
M(−κ2)− M̃(−κ2)

)
=

∫ +∞

0
(qf (x)− qf̃ (x))S∞(x ,−κ2)S̃∞(x ,−κ2)dx ,

=

∫ +∞

0
e−2κxBq,q̃[qf̃ − qf ](x) dx ,

where the operator Bq,q̃ is a Volterra type integral operator given by:

Bq,q̃h(x) = h(x) +

∫ x

0
G (x , t)h(t) dt,

explicit in terms of the Marchenko Kernel K (x , t).
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The operator B

Define the Hilbert spaces

Hδ = {q : ||q||2Hδ
:=

∫ +∞

0
|q(x)|2 eδx dx <∞}.

Then

Proposition 12

Let c , c̃ be warping functions belonging to Cm,p(A). Then, for any
0 < δ < p, the operator B : Hδ → Hδ is an isomorphism and there exists
a constant CA,δ depending only on A and δ such that

‖B‖+ ‖B−1‖ ≤ CA,δ.



The moment’s approximation problem

Using this new representation, our main assumption becomes :∣∣∣∣∫ +∞

0
e−2κkxB[qf̃ − qf ](x) dx

∣∣∣∣ ≤ CA ε, ∀k ≥ 0.

Setting r = e−x , this can be written as

|
∫ 1

0
rλk h(r) dr | ≤ CA ε, ∀k ≥ 0,

where we have set

h(r) = r−
δ+1

2 B[qf̃ − qf ](− log r), λk = 2k + d − 3 +
δ + 1

2
.

Note that
‖h‖L2(0,1) = ‖B[qf̃ − qf ]‖Hδ

.
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A Hausdorff moment problem with non-integral powers
(according to Ang, Gorenflo, Le and Trong)

We shall give an approximation of the L2-norm of a function f from the
approximate knowledge of a finite number of its moments:

mk =

∫ 1

0
rλk f (r) dr , k ∈ N.

Thanks to Müntz’s Theorem, if

Λ∞ = {0 = λ0 < λ1 < ... < λn < ...} ,

is a sequence of positive real numbers such that

+∞∑
k=1

1

λk
=∞,

the system {xλ0 , xλ1 , ...} is complete in L2([0, 1]).



Müntz polynomials

Associated to the sequence (λk), we define the Müntz polynomials
(Lm(x)) as L0(x) = 1, and for m ≥ 1,

Lm(x) =
m∑
j=0

Cmjx
λj ,

where we have set

Cmj =
√

2λm + 1

∏m−1
r=0 (λj + λr + 1)∏m
r=0,r 6=j(λj − λr )

.

The family (Lm(x)) defines an orthonormal Hilbert basis of L2([0, 1]).

We define the subspace of Müntz “polynomials” of degree λn as:

M(Λn) = {P : P(x) =
n∑

k=0

ak xλk}.



Approximation by Müntz polynomials

Assume that the (n + 1) first moments of a function f ∈ L2([0, 1]) are
zero up to noise, i.e there exists ε > 0 such that

mk = |
∫ 1

0
f (r) rλk dr | ≤ ε , ∀k = 0, ..., n.

We denote πn(f ) the orthogonal projection on the subspace M(Λn):

πn(f ) =
n∑

k=0

(f , Lk)Lk =⇒ ||πn(f )||22 ≤
n∑

k=0

m2
k

 k∑
p=0

|Ckp|

2

.

We denote the error of approximation of f from M(Λn) by :

E (f ,Λn)p := inf
P∈M(Λ)

||f − P||p.

Clearly, one has

E (f ,Λn)2 = ||f − πn(f )||2 ≤ E (f ,Λn)∞.
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Some estimates on the error
Introduce the index of approximation

B(z) := B(z ,Λ) =
n∏

k=0

z − λk
z + λk

, ε∞(Λ) = max
y≥0

∣∣∣∣B(1 + iy)

1 + iy

∣∣∣∣ .
Proposition 13

Let Λ : 0 = λ0 < λ1 < ... < λn be a finite sequence. Then, for each
f ∈ C 1([0, 1]),

E (f ,Λ)∞ ≤ 20 ε∞(Λ) ||f ′||∞.

Corollary 14

Let Λ∗n : 0 < λ1 < ... < λn be a finite sequence. For 0 ≤ k ≤ p − 1, we

set: Λ
(k)
n : λ

(k)
1 = λ1 − k , ... , λ

(k)
n = λn − k. Then for each

f ∈ Cp([0, 1]) such that f (k)(0) = 0 for all k = 0, ..., p − 1, one has:

E (f ,Λ∗n)∞ ≤ 40p
p−1∏
k=0

ε∞(Λ
(k)
n ) ||f (p)||∞.



Some estimates on the error
Introduce the index of approximation

B(z) := B(z ,Λ) =
n∏

k=0

z − λk
z + λk

, ε∞(Λ) = max
y≥0

∣∣∣∣B(1 + iy)

1 + iy

∣∣∣∣ .
Proposition 13

Let Λ : 0 = λ0 < λ1 < ... < λn be a finite sequence. Then, for each
f ∈ C 1([0, 1]),

E (f ,Λ)∞ ≤ 20 ε∞(Λ) ||f ′||∞.

Corollary 14

Let Λ∗n : 0 < λ1 < ... < λn be a finite sequence. For 0 ≤ k ≤ p − 1, we

set: Λ
(k)
n : λ

(k)
1 = λ1 − k , ... , λ

(k)
n = λn − k. Then for each

f ∈ Cp([0, 1]) such that f (k)(0) = 0 for all k = 0, ..., p − 1, one has:

E (f ,Λ∗n)∞ ≤ 40p
p−1∏
k=0

ε∞(Λ
(k)
n ) ||f (p)||∞.



Some estimates on the error
Introduce the index of approximation

B(z) := B(z ,Λ) =
n∏

k=0

z − λk
z + λk

, ε∞(Λ) = max
y≥0

∣∣∣∣B(1 + iy)

1 + iy

∣∣∣∣ .
Proposition 13

Let Λ : 0 = λ0 < λ1 < ... < λn be a finite sequence. Then, for each
f ∈ C 1([0, 1]),

E (f ,Λ)∞ ≤ 20 ε∞(Λ) ||f ′||∞.

Corollary 14

Let Λ∗n : 0 < λ1 < ... < λn be a finite sequence. For 0 ≤ k ≤ p − 1, we

set: Λ
(k)
n : λ

(k)
1 = λ1 − k , ... , λ

(k)
n = λn − k. Then for each

f ∈ Cp([0, 1]) such that f (k)(0) = 0 for all k = 0, ..., p − 1, one has:

E (f ,Λ∗n)∞ ≤ 40p
p−1∏
k=0

ε∞(Λ
(k)
n ) ||f (p)||∞.



Application
Applying this to our moment conditions

|
∫ 1

0
rλk h(r) dr | ≤ CA ε, ∀k ≥ 0,

we obtain after some work:

‖h‖2
2 = ‖πn(h)‖2

2 + ‖h − πn(h)‖2
2,

≤ ε2
n∑

k=0

 k∑
p=0

|Ckp|

2

+

(
40p

p−1∏
k=0

ε∞(Λ
(k)
n ) ‖h(p−1)‖∞

)2

,

≤ B2ε2 g(n)2 + CA

(
1

n

)p−1

,

for some constant B, where (for some constant M)

g(t) =
3

2

1√(
9M
2

)2 − 1

√
2t + 1

(
9M

2

)t+1

.
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Set n(ε) := E (g−1(
1√
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)). Clearly, since g is an increasing function,

one has g(n(ε)) ≤ 1√
ε
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Some perspectives and open questions

The reconstruction problem of the conformal factor from the Steklov
spectrum is reachable (work in progress).

Can uniqueness and better (Hölder, Lipschitz) stability estimates be
obtained using other spectral data such as Regge poles ? (work in
progress).

The methods used in this work are entirely based on 1-d techniques
adapted to a radial conformal factor. Can the conformal factor be
perturbed in transversal directions?

Can doubly warped products, or more general separable structures
(Stäckel or Painlevé systems) be considered? This could allow for
special metrics on the angular part.


