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terrestrial planets, discrete spectrum omitting rotation

seismic normal modes -0.4
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geometrical setup – c = cP , cS phase boundaries

radial manifold with boundary, M = B(0, 1) – Riemannian metric

g(x) = c−2(|x |)e(x), c : (0, 1]→ (0,∞)

e is the standard Euclidean metric

c(r) has a jump discontinuity at a finite set of values r = r1, · · · , rK ; that is
limr→r−k

c(r) 6= limr→r+
k
c(r) for each i (annuli A(rk−1, rk))

a maximal geodesic is a unit speed geodesic on the Riemannian manifold with each endpoint
at its boundary or at an interface

a broken ray is a concatenation of maximal geodesics satisfying the reflection condition of
geometrical optics at both inner and outer boundaries of M, and Snell’s law for geometric
optics at the interfaces
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conditions not on jumps

Herglotz condition

d

dr

(
r

c(r)

)
> 0

away from discontinuities

trapping
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basic geodesics annuli or layers

a broken ray is called basic if

• it stays within a single layer and all of its legs are reflections from a single interface, or

• it is a radial ray contained in a single layer; such a ray is defined to be a ray with zero
epicentral distance and will necessarily reflect from two interfaces

let γ be a basic ray with radius R∗ (rk ≤ R∗ < rk]1), (conserved) ray parameter p, which lies
inside inside A(rk−1, rk) (1 = r0 > r1 > · · · > rK ); there is a unique N ∈ N so that its length
T is

T = 2NLγ := 2N

∫ rk−1

R∗

1

c(r ′)2β(r ′; p)
dr ′, β(r ; p)2 = c(r)−2 − r−2p2

and angular or epicentral distance

αγ := α(p) = 2N

∫ rk−1

R∗

p

(r ′)2β(r ′; p)
dr ′
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conditions

Definition

Consider geodesics in an annulus A(a, b) equipped with a C 1,1 wave speed c : (a, b]→ (0,∞).
It satisfies the countable conjugacy condition if there are only countably many radii r ∈ (a, b)
so that the endpoints of the corresponding maximal geodesic γ(r) are conjugate along that
geodesic.

Definition

The radial wave speed c satisfies the periodic conjugacy condition if for each periodic,
nongliding ray with a ray parameter p, ∂pα(p) 6= 0. (This ensures that the phase function in
the stationary phase argument for computing the trace formula is Bott-Morse nondegenerate.)

cτ : [0, 1]→ (0,∞) indexed by τ ∈ (−ε, ε) is an “admissible” family of profiles
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(basic) length spectrum

length spectrum, lsp(c):
the set of lengths of all
periodic broken rays

basic length spectrum :
blsp(c)

K
0o

30 o

60 o
90

o

120
o

150
o

180o
210o

24
0o

27
0o

30
0
o

330
o

0o

30 o

60 o
90

o

120
o

150
o

180o
210o

24
0o

27
0o

30
0
o

330
o

SP
0o

30 o

60 o
90

o

120
o

150
o

180o
210o

24
0o

27
0o

30
0
o

330
o

SP

0o

30 o

60 o
90

o

120
o

150
o

180o
210o

24
0o

27
0o

30
0
o

330
o

SP

P in blue, S in red (PKPab, PKIKP, SP, SKKS, PKJKP)

M.V. de Hoop (Rice University) normal modes, Raleigh waves, resonances Reims 2021 7 / 45



conditions

• equivalence classes [γ] (rotations, time reversal, dynamic analogs) parameterized by p

• Q[γ] is product of reflection and transmission coefficients (transmission conditions)

• n[γ] is number of dynamic analogs

Definition

The length spectrum satisfies the principal amplitude injectivity condition if given two closed
rays γ1 and γ2 with the same period and disjoint equivalence classes (so they must have
different ray parameters p1 and p2, then

n[γ1]Q[γ1]|p−2
1 ∂pα(p1)|−1/2 6= n[γ2]Q[γ2]|p−2

2 ∂pα(p2)|−1/2

ensuring recovery of T .
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spectral rigidity

Theorem

Fix any ε > 0 and K ∈ N, and let cτ (r) be an admissible family of profiles with discontinuities
at rk(τ) for all k = 1, . . . ,K. Let blsp(τ) denote the basic length spectrum with the wave
speed profile cτ . Suppose blsp(τ) is countable for all τ . Let S(τ) be any collection of
countable subsets of R indexed by τ .

If blsp(τ)∪S(τ) = blsp(0)∪S(0) for all τ ∈ (−ε, ε), then cτ = c0 and rk(τ) = rk(0) for all
τ ∈ (−ε, ε) and k = 1, . . . ,K.
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spectral rigidity

Corollary (Length spectral rigidity with two polarizations)

Fix any ε > 0 and K ∈ N, and let c iτ (r) with both i = 1, 2 be an admissible family of profiles
with discontinuities at rk(τ) for all k = 1, . . . ,K. Consider all periodic rays which are
geodesics within each layer and satisfy the usual reflection or transmission conditions at
interfaces, but which can change between the wave speed profiles c1

τ and c2
τ at any reflection

and transmission. Suppose that the length spectrum of this whole family of geodesics, denoted
by lsp(τ), is countable in the ball B(0, 1).

If lsp(τ) = lsp(0) for all τ ∈ (−ε, ε), then c iτ = c i0 for both i = 1, 2 and rk(τ) = rk(0) for all
τ ∈ (−ε, ε) and k = 1, . . . ,K.
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spectral rigidity, terrestrial planets

Theorem (Spectral rigidity with moving interfaces)

Fix any ε > 0 and K ∈ N, and let cτ (r) be an admissible family of profiles with discontinuities
at rk(τ) for all k = 1, . . . ,K. Suppose that the length spectrum for each cτ is countable in the
ball B̄(0, 1) ⊂ R3. Assume also that the length spectrum satisfies the principal amplitude
injectivity condition and the periodic conjugacy condition.

Suppose spec(τ) = spec(0) for all τ ∈ (−ε, ε). Then cτ = c0 and rk(τ) = rk(0) for all
τ ∈ (−ε, ε) and k = 1, . . . ,K.

trace formula – possible periodic broken rays γ0, say, with gliding

• gliding occurs at only one interface; this is ensured by the Herglotz condition

• there is a sequence of periodic non-gliding broken rays γi so that γi → γ0; subtlety lies in
ensuring periodicity of the approximating rays
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“near” phase boundaries, Earth’s surface
Love and Rayleigh waves: local recovery
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surface waves vs normal modes angular variations

Earth as a unit ball B1 = B(0, 1); there is a global
diffeomophism, φ

φ : B1 \ {0} → S2 × R−

φ(Br ) = S2 ×
{

1− 1

r

}
, r 6= 0

• for an open and bounded subset U ⊂ S2, the cone region, {(Θ, r) | Θ ∈ U, 0 < r < 1},
is diffeomorphic to U × R−; we can find global coordinates for U and we may consider
our system on the domain S2 × R−
• more generally, we consider the system on any Riemannian manifold of the form
M = ∂M × R− with metric

g =

(
g ′ 0
0 1

)
• for a “nice” domain Ω, a neighborhood of the boundary is diffeomorphic to M, where the

metric g ′ is the induced metric of the boundary of Ω
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perspective isotropic elasticity

seismology – elastic wave equation

• Rayleigh waves/modes have long/widely been used to study Earth’s crust and upper
mantle (Dorman & Ewing, 1962)

• empirically it has been established that “phase velocities” or eigenvalues (fundamental
mode and overtones) at a few discrete frequencies are insufficient data to determine both
P- and S-wave speeds (Lamé parameters)

• it is now common practice to add data: “H/V” related to the components of the trace of
modes, and information from body waves/modes

analysis

• Pekeris (1934), Markushevich (1994) – pair of adjoint Rayleigh Sturm-Liouville problems

• Beals, Henkin & Novikova (1995) – unphysical setting
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perspective isotropic elasticity

setting

• for uniqueness: Jost function or spectral data at two distinct frequencies

• analysis for a finite (crust, upper mantle) slab beneath a traction-free surface (half space,
flat earth)

Lamé parameters depend on the surface/boundary normal coordinate only
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some history time-harmonic elastic waves

inverse boundary value problem on a bounded, Lipschitz subdomain of R3

Nakamura & Uhlmann (1994) proved uniqueness assuming that the Lamé parameters are C∞ and that

the shear modulus is close to a positive constant

Eskin & Ralston (2002) proved a related result

Beretta, dH, Francini, Vessella & Zhai (2017) proved uniqueness and Lipschitz stability of such an

inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a

given domain partition
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Rayleigh system spectral parameter ξ

d

dx

(
µ

dw1

dx
− ξµw2

)
− ξλdw2

dx
+
(
ω2 − ξ2(λ+ 2µ)

)
w1 = 0

d

dx

(
(λ+ 2µ)

dw2

dx
+ ξλw1

)
+ ξµ

dw1

dx
+ (ω2 − ξ2µ)w2 = 0

x ∈ [0,∞), supplemented with the (traction) boundary conditions(
µ

dw1

dx
− ξµw2

)∣∣∣∣
x=0+

= χ1 = 0(
(λ+ 2µ)

dw2

dx
+ ξλw1

)∣∣∣∣
x=0+

= χ2 = 0

write χ = (χ1, χ2)T x is boundary normal coordinate

notation: use ξ for both |ξ| ∈ R+ and its values in C following analytic continuation
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Lamé parameters normalized by density

Assumption

We let µ ≥ α0 > 0, 2µ+ 3λ ≥ β0 > 0, λ, µ ∈ C 3(R+) and λ(x) = λ0, µ(x) = µ0 for x ≥ H.

H signifies thickness of slab
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Markushevich transform

let G be a 2× 2-matrix solving the Cauchy problem,

G ′ =
1

2
LG , G (0) = I2

where I2 is the unit matrix,

L =

(
0 −d
−c 0

)
with c =

1

g0

µ(λ+ µ)

(λ+ 2µ)
, d = −2g0

(
1

µ

)′′
detG (x) = 1

g0 stands for an arbitrary positive constant; it is convenient to put g0 = µ0
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(inverse) Markushevich transform

M−1(F ) =

(
w1

w2

)
with M−1 =

(
d

dx
1

−ξ 0

) µ0

µ
0

0
µ

λ+ 2µ

(GT
)−1

original system reduces to the matrix Sturm-Liouville form

F ′′ − ξ2F = QF , x ∈ (0,∞)

F ′ + ΘF =
(
Da
)−1

χ, x = 0; Θ = Θ(ξ) = (Da(ξ))−1C a(ξ)

Da(ξ) =

 −2µ0
µ′(0)

µ(0)
µ(0)

−2µ0ξ 0

 , C a(ξ) =

 µ0

(
2ξ2 − ω2

µ(0)
+
µ′′(0)

µ(0)

)
− µ′(0)µ(0)

λ(0) + 2µ(0)

2µ0ξ
µ′(0)

µ(0)
−ξ µ2(0)

λ(0) + 2µ(0)


Q is the matrix-valued potential: Q =

(
G−1BG

)T
, B = B1 + ω2B2
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adjoint problem

(Ma)−1 (F a) =

(
w1

w2

)
with (Ma)−1 =

(
0 −ξ

1
d

dx

) 1 −2µ0

(
1

µ

)′
0

µ0

µ

G

original system transforms to the matrix Sturm-Liouville form

(F a)′′ − ξ2F a = QaF a, x ∈ (0,∞)

(F a)′ + ΘaF a = D−1χ, x = 0; Qa = QT, Θa = ΘT(ξ) = D−1(ξ)C (ξ)

D(ξ) =

(
0 −2ξµ0

µ(0) 0

)

C (ξ) =

 −ξ
µ2(0)

(λ(0) + 2µ(0))
0

−µ′(0)
µ0

µ(0)

(
2µ(0)ξ2 − ω2 − 2

(µ′(0))2

µ(0)
+ µ′′(0)

)

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potential reference

denote Q(x) for x ≥ H by Q0(x) c0 = λ0+µ0
λ0+2µ0

, GH = G (H)

Q0(x) =ω2

−
1

µ0
0

0 − 1

λ0 + 2µ0



+ ω2 c0

µ0

−GH
12

[
−c0

2
GH

11(x − H) + GH
21

]
GH

11

[
−c0

2
GH

11(x − H) + GH
21

]
−GH

12

[
−c0

2
GH

12(x − H) + GH
22

]
GH

12

[
−c0

2
GH

11(x − H) + GH
21

]


extend Q0 = Q0(x) to x ∈ (0,H], linear in x ; V (x) = Q(x)− Q0(x), V (x) = 0 for x ≥ H

Definition

A real matrix-valued potential, Q, is of Lamé type if it can be generated from Lamé parameters
according to the Markushevich transform. Due to the Assumption, Q ∈ C 1(R+) ∩ L∞(R+).
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boundary determination

The Lamé parameters at x = 0 and x ≥ H, that is, λ(0), µ(0) as well as µ′(0), µ′′(0) and λ0

and µ0 are encoded in, and determine Θ independently of Q

we will not consider the problem of boundary determination
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solutions to reference equations: −F ′′ + Q0F = −ξ2F and −(F a)′′ + QT
0 F a = −ξ2F a

F±P,0 =

 −c0

2
GH

11(x − H) + GH
21 ± iqP

µ0

ω2
GH

11

−c0

2
GH

12(x − H) + GH
22 ± iqP

µ0

ω2
GH

12

 e±ixqP

F±S,0 = −µ0
ξ

ω2

(
GH

11

GH
12

)
e±ixqS

and

F a,±
S ,0 =

 −c0

2
GH

12(x − H) + GH
22 ∓ iqS

µ0

ω2
GH

12

c0

2
GH

11(x − H)− GH
21 ± iqS

µ0

ω2
GH

11

 e±ixqS

F a,±
P,0 = µ0

ξ

ω2

(
GH

12

−GH
11

)
e±ixqP

quasi-momenta

qP =

√
ω2

λ0 + 2µ0
− ξ2

qS =

√
ω2

µ0
− ξ2

cut complex plane

K = C \
([
− ω
√
µ0
,
ω
√
µ0

]
∪ iR

)
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Riemann surface basics

• Riemann surface R is obtained for both qP and qS by joining the separate Riemann
surfaces for qP and qS so that qP and qS are single-valued holomorphic functions of
ξ

• R is a four-fold cover of the plane; the part of R where Im qP > 0, Im qS > 0 is the
physical (“upper”) sheet K+ = KS ,+

• ζ = ξ2 (“energies”); Im qS(ζ) > 0, Im qP(ζ) > 0 for ζ ∈ Π+,

Π+ = C \
(
−∞, ω

2

µ0

]
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Jost solutions

Jost solutions, F±P ,F
±
S are determined by the conditions

F±P = F±P,0, F±S = F±S,0 for x ≥ H

define the matrix Jost solution as

F(x , ξ) = [F+
P F+

S ]

and the Jost function (at the boundary, x = 0) as

FΘ(ξ) = F′(0, ξ) + Θ(ξ)F(0, ξ)

similarly for the adjoint problem

Fa
Θ(ξ) =

−2
µ0

µ0
ξ 0

µ′(0)

µ(0)

1

ξ
−µ(0)

2µ0

1

ξ

FΘ(ξ)
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Jost solutions

Jost solutions, F±P ,F
±
S are determined by the conditions

F±P = F±P,0, F±S = F±S,0 for x ≥ H

define the matrix Jost solution as

F(x , ξ) = [F+
P F+

S ]

and the Jost function (at the boundary, x = 0) as

FΘ(ξ) = F′(0, ξ) + Θ(ξ)F(0, ξ)

similarly for the adjoint problem

Fa
Θ(ξ) =

−2
µ0

µ0
ξ 0

µ′(0)

µ(0)

1

ξ
−µ(0)

2µ0

1

ξ

FΘ(ξ)
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Weyl matrix Neumann-to-Dirichlet map

Weyl solution
Φ(x , ξ) = F(x , ξ)[FΘ(ξ)]−1

Weyl matrix
M(ξ) = Φ(0, ξ) = F(0, ξ)[FΘ(ξ)]−1

M(ξ)FΘ(ξ) = F(0, ξ), whence M(ξ) can be identified with the Robin-to-Dirichlet map
associated with the matrix Sturm-Liouville problem

Ma = MT

M (det) has a finite number (from asymptotics) of simple poles, at ξ1, . . . , ξN (guided modes)

Assumption

The parameter functions, λ and µ, are such that there is no pole of M(ξ) with Im qS = 0
except, possibly, at ξ = ω√

µ0
as a one-sided limit in K+.

M.V. de Hoop (Rice University) normal modes, Raleigh waves, resonances Reims 2021 27 / 45



Weyl matrix Neumann-to-Dirichlet map
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M̂(ζ(ξ)) = M(ξ), ζ(ξ) = ξ2 physical sheet; evanescent, radiating, guided modes

Lemma

The matrix M̂ admits the representation ζj = ξ2
j

M̂(ζ) =

∫ ω2

µ0

−∞

T̂(η)

ζ − η
dη +

N∑
j=1

αj

ζ − ζj
, ζ ∈ Π+ \ Λ′, Λ′ = {ζ1, . . . , ζN}

where
αj = Res ζ=ζj M̂(ζ) = F(0, ξj)uj , uj = 2ξj Res ξ=ξj [FΘ(ξ)]−1

or

αj = −[uaj ]T
∫ ∞

0
[Fa(x , ξj)]TF(x , ξ) dx uj , uaj = 2ξj Res ξ=ξj [F

a
Θ(ξ)]−1

or

αj = F(0, ξj)
(
F′Θ(ξj)

)−1
= −iµ0

ω2

[
(Fa

Θ(−ξj))T
]−1

(
qP(ξj) 0

0 −qS(ξj)

)(
F′Θ(ξj)

)−1
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M̂(ζ(ξ)) = M(ξ), ζ(ξ) = ξ2 physical sheet

and T̂ = T̂(ζ), T̂(ζ(ξ)) = T(ξ) with

T(ξ) = − ξµ0

πω2
[(Fa

Θ)T(−ξ)]−1

(
qP(ξ) 0

0 −qS(ξ)

)
[FΘ(ξ)]−1,

signifying the branch cut.

αj and T can be expressed in terms of the Jost function only, thus the Lemma indicates that
the Jost function encodes the boundary spectral data
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unique recovery

• we assume that H, λ0, µ0, µ(0) and µ′(0) are known

• introduce the expansion of the Jost solution at the boundary

F(0, ξ) = ξG0(0, ξ) + G1(0) + R(ξ), R(ξ) = O
(

1

|ξ|

)
we can construct explicit expressions for G0(0, ξ) and G1(0, ξ)

Lemma

Given λ0 and µ0. The mapping from GH to (G0(0, ξ),G1(0, ξ)) for any pair of frequencies,
ω1 6= ω2 ∈ R+, is an injection.

thus (G0(0, ξ),G1(0, ξ)) for any pair of frequencies, ω1 6= ω2 determine GH ; moreover, GH

together with H, λ0, µ0 and ω determine Q0
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unique recovery

as λ0, µ0 are known, the Jost function determines the Weyl matrix

Proposition

Given GH . For ω fixed, let V1,V2 be compactly supported on [0,H] and belong to L1([0,H])
with associated Weyl matrices M1, M2. If H, λ0, µ0, µ(0) and µ′(0) are known and the
Assumptions hold true, then M2(ξ) = M1(ξ) for all ξ ∈ K+ implies that V2 = V1.

proof: Gel’fand-Levitan-type equation, with some complications

thus, GH together with M(ξ) determine V
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unique recovery

by implication, (G0(0, ξ),G1(0, ξ)) for any two frequencies ω1 6= ω2 ∈ R+ and M(ξ) determine
Q

Theorem

Let Q1, Q2 be of Lamé type with associated Jost functions FΘ;1, FΘ;2. Assume that H, λ0,
µ0, µ(0) and µ′(0) are known. Then FΘ;2(ξ) = FΘ;1(ξ) for all ξ ∈ K+ and any pair of
frequencies, ω1 6= ω2 ∈ R+, subject to the Assumptions, implies that Q2 = Q1.

furthermore, from a Lamé-type Q for any pair of frequencies, ω1 6= ω2 ∈ R+, one can recover
λ and µ

reconciling seismology with analysis

• we need both the Weyl matrix and the Jost solution at the boundary for the unique
recovery of Lamé parameters

• assuming that λ0 and µ0 are known, the Jost function determines the Weyl matrix and
the Jost solution at the boundary

M.V. de Hoop (Rice University) normal modes, Raleigh waves, resonances Reims 2021 32 / 45



unique recovery

by implication, (G0(0, ξ),G1(0, ξ)) for any two frequencies ω1 6= ω2 ∈ R+ and M(ξ) determine
Q

Theorem
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(Love and) Rayleigh resonances
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perspective isotropic elasticity

leaky modes: Rayleigh resonances

• Rosenbaum (1960)

• Phinney (1961) – theoretical study of leaky waves, referred to as pseudo-P modes

• Haddon (1986) – evaluation of the response of a layered elastic medium to an explosive
point source (∼ resolvent) using leaking modes

• Schröder & Scott (2001) – study of complex conjugate roots of the Rayleigh equation

• Garćıa-Jerez & Sánchez-Sesma (2014) – P-SV leaky waves

• Gao, Xia & Pan (2014)
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return to Rayleigh system resonances

d

dZ

(
µ

dw1

dZ

)
+ iξ

( d

dZ
(µw2) + λ

dw2

dZ

)
+
(
ω2 − ξ2(λ+ 2µ)

)
w1 = 0

d

dZ

(
(λ+ 2µ)

dw2

dZ

)
+ iξ

( d

dZ
(λw1 + µ

dw1

dZ

)
+ (ω2 − ξ2µ)w2 = 0

Z ∈ (−∞, 0], supplemented with the (traction) boundary conditions

χ1 =

(
µ

dw1

dZ
+ iξµw2

)∣∣∣∣
Z=0−

=: a(w) = 0

χ2 =

(
(λ+ 2µ)

dw2

dZ
+ iξλw1

)∣∣∣∣
Z=0−

=: b(w) = 0

Z is boundary normal coordinate

notation: use ξ for both |ξ| ∈ R+ and its values in C following analytic continuation
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Lamé parameters normalized by density

Assumption

We let µ ≥ α0 > 0, 2µ+ 3λ ≥ β0 > 0, λ, µ ∈ C 3(R−); λ(Z ) = λ0, µ(Z ) = µ0 for Z ≤ −H.

H signifies thickness of slab, ZI := −H

quasi-momenta

qP =

√
ω2

λ0 + 2µ0
− ξ2

qS =

√
ω2

µ0
− ξ2
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Riemann surface basics

• Riemann surface R is obtained for both qP and qS by joining the separate Riemann
surfaces for qP and qS so that qP and qS are single-valued holomorphic functions of ξ

• R is a four-fold cover of the plane; the sheets of R,

R = R++ ∪R+− ∪R−+ ∪R−− = ∪σ1,σ2Rσ1,σ2 , (σ1, σ2) = (sign Im qP , sign Im qS)

to a point ξ ∈ R we may associate the two values qS(ξ), qP(ξ) and can determine a mapping
R → R by its action on qS(ξ), qP(ξ); thus, we define mappings, wP , wS and wSP : R → R

qS(wS(ξ)) = −qS(ξ), qP(wS(ξ)) = qP(ξ)

qS(wP(ξ)) = qS(ξ), qP(wP(ξ)) = −qP(ξ)

qS(wSP(ξ)) = −qS(ξ), qP(wSP(ξ)) = −qP(ξ)

relations, between the sheets of the Riemann surface, map a point ξ ∈ R to another point in R
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return to Jost solutions prior to Markushevich transform

Jost solutions f ±P , f ±S for Z < 0 satisfy the conditions

f ±P = f ±P,0, f ±S = f ±S,0 for Z < ZI

where

f ±P =

(
f ±P,1
f ±P,2

)
=

(
ξ
±qP

)
e±iZqP , Z < ZI

f ±S =

(
f ±S ,1
f ±S ,2

)
=

(
±qS
−ξ

)
e±iZqS , Z < ZI

extend µ(Z ), λ(Z ) as even functions to Z > 0; with these, extend the system to the real line

by abuse of notation, we use the same notation, f ±P , f ±S , for the Jost solutions satisfying the
evenly extended system
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boundary matrix

denote

B =

(
a(f −P ) a(f −S )
b(f −P ) b(f −S )

)
, B = B(ξ)

signifying the boundary matrix representing boundary tractions induced by the Jost solutions

the boundary matrix determines the Jost function via the inverse Markushevich transform
assuming that µ(0), µ′(0) and µ0 are known

Rayleigh determinant
∆ = det B
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decomposition into entire functions

define

ϑP =
1

2

(
f +
P + f −P

)
, ϕP =

1

2qP

(
f +
P − f −P

)
, ϑS =

1

2

(
f +
S + f −S

)
, ϕS =

1

2qS

(
f +
S − f −S

)
boundary matrix takes the form

B =

(
a(ϑP) a(ϑS)
b(ϑP) b(ϑS)

)
−
(
a(ϕP) a(ϕS)
b(ϕP) b(ϕS)

)(
qP 0
0 qS

)
Rayleigh determinant takes the form

∆ = d1 + qPd2 + qSd3 + qPqSd4

where

d1 = det

(
a(ϑP) a(ϑS)
b(ϑP) b(ϑS)

)
, d2 = − det

(
a(ϕP) a(ϑS)
b(ϕP) b(ϑS)

)
d3 = − det

(
a(ϑP) a(ϕS)
b(ϑP) b(ϕS)

)
, d4 = det

(
a(ϕP) a(ϕS)
b(ϕP) b(ϕS)

)
;

S = det

(
a(ϕS) a(ϑS)
b(ϕS) b(ϑS)

)
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decomposition into entire functions

define

ϑP =
1

2

(
f +
P + f −P

)
, ϕP =

1

2qP

(
f +
P − f −P

)
, ϑS =

1

2
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1

2qS
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f +
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B =

(
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)
−
(
a(ϕP) a(ϕS)
b(ϕP) b(ϕS)

)(
qP 0
0 qS

)
Rayleigh determinant takes the form

∆ = d1 + qPd2 + qSd3 + qPqSd4

where

d1 = det

(
a(ϑP) a(ϑS)
b(ϑP) b(ϑS)

)
, d2 = − det

(
a(ϕP) a(ϑS)
b(ϕP) b(ϑS)

)
d3 = − det

(
a(ϑP) a(ϕS)
b(ϑP) b(ϕS)

)
, d4 = det

(
a(ϕP) a(ϕS)
b(ϕP) b(ϕS)

)
; S = det

(
a(ϕS) a(ϑS)
b(ϕS) b(ϑS)

)
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intermediate function, Rayleigh resonances

F (ξ) = ∆(ξ)∆(wS(ξ))∆(wP(ξ))∆(wPS(ξ)).

is in a Cartwright class (C4H)

Rayleigh resonance “frequencies” are the zeros of the Rayleigh determinant; they are grouped
in sets

Σ++, Σ+−, Σ−+, Σ−−

on the four sheets, R++, R+−, R−+, R−−; that is,

∆(ξj) = 0, ξj ∈ Σ++,

∆(wP(ξj)) = 0, ξj ∈ Σ−+,

∆(wS(ξj)) = 0, ξj ∈ Σ+−,

∆(wPS(ξj)) = 0, ξj ∈ Σ−−

the set Σ++ corresponds with Regge “bound states”
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recovery

• F can be recovered from resonance frequencies (Hadamard factorization)

• S can be recovered from “frequencies” at which no mode conversion occurs

Conjecture

The boundary matrix can be recovered from the resonance frequencies and S.

recovery follows from applying the theorem for spectral data
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return to Jost solutions

Lemma

On the Riemann surface R, the following holds true

f ±P (Z ,wP(ξ)) = f ±P (Z ,wPS(ξ)) = f ∓P (Z , ξ),

f ±S (Z ,wS(ξ)) = f ±S (Z ,wPS(ξ)) = f ∓S (Z , ξ).
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physical sheet

identify R++ where Im qP > 0, Im qS > 0 with the physical (or “upper”) sheet for qS

K++ =

{
ξ ∈ KS = C \

([
− ω
√
µ0
,
ω
√
µ0

]
∪ iR

)
: Re ξ > 0

}
on K++ we have Im qP > Im qS
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