Seismic normal modes, Rayleigh waves, resonances and inverse problems
– reconciliation of seismology with analysis

M.V. de Hoop
A. Iantchenko, J. Ilmavirta and V. Katsnelson

Rice University
Simons Foundation MATH + X
NSF-DMS, DOE BES, Geo-Mathematical Imaging Group, Google Research

Reims 2021
terrestrial planets, discrete spectrum

omitting rotation

seismic normal modes

decomposition of natural Hilbert space

normal modes, Raleigh waves, resonances
geometrical setup \(- c = c_P, c_S\)

radial manifold with boundary, \(M = \overline{B(0,1)}\) – Riemannian metric

\[g(x) = c^{-2}(|x|)e(x), \quad c: (0, 1] \rightarrow (0, \infty) \]

e is the standard Euclidean metric

\[c(r) \] has a jump discontinuity at a finite set of values \(r = r_1, \cdots, r_K \); that is

\[\lim_{r \rightarrow r_k^-} c(r) \neq \lim_{r \rightarrow r_k^+} c(r) \] for each \(i \) (annuli \(A(r_{k-1}, r_k) \))

a maximal geodesic is a unit speed geodesic on the Riemannian manifold with each endpoint at its boundary or at an interface

a broken ray is a concatenation of maximal geodesics satisfying the reflection condition of geometrical optics at both inner and outer boundaries of \(M \), and Snell’s law for geometric optics at the interfaces
Conditions

Herglotz condition

$$\frac{d}{dr} \left(\frac{r}{c(r)} \right) > 0$$

Away from discontinuities
A broken ray is called basic if

- it stays within a single layer and all of its legs are reflections from a single interface, or
- it is a radial ray contained in a single layer; such a ray is defined to be a ray with zero epicentral distance and will necessarily reflect from two interfaces.

Let γ be a basic ray with radius R^* ($r_k \leq R^* < r_{k+1}$), (conserved) ray parameter p, which lies inside $A(r_{k-1}, r_k)$ ($1 = r_0 > r_1 > \cdots > r_K$); there is a unique $N \in \mathbb{N}$ so that its length T is

$$T = 2NL\gamma := 2N \int_{R^*}^{r_{k-1}} \frac{1}{c(r')^2 \beta(r'; p)} \, dr', \quad \beta(r; p)^2 = c(r)^{-2} - r^{-2} p^2$$

and angular or epicentral distance

$$\alpha_\gamma := \alpha(p) = 2N \int_{R^*}^{r_{k-1}} \frac{p}{(r')^2 \beta(r'; p)} \, dr'$$
Consider geodesics in an annulus \(A(a, b) \) equipped with a \(C^{1,1} \) wave speed \(c : (a, b] \to (0, \infty) \). It satisfies the \textit{countable conjugacy condition} if there are only countably many radii \(r \in (a, b) \) so that the endpoints of the corresponding maximal geodesic \(\gamma(r) \) are conjugate along that geodesic.

The radial wave speed \(c \) satisfies the \textit{periodic conjugacy condition} if for each periodic, nongliding ray with a ray parameter \(p \), \(\partial_p \alpha(p) \neq 0 \). (This ensures that the phase function in the stationary phase argument for computing the trace formula is Bott-Morse nondegenerate.)

\[c_\tau : [0, 1] \to (0, \infty) \text{ indexed by } \tau \in (-\varepsilon, \varepsilon) \text{ is an “admissible” family of profiles} \]
(basic) length spectrum

Length spectrum, $\text{lsp}(c)$: the set of lengths of all periodic broken rays

Basic length spectrum: $\text{blsp}(c)$

P in blue, S in red (PKPab, PKIKP, SP, SKKS, PKJKP)
conditions

- equivalence classes \([\gamma]\) (rotations, time reversal, dynamic analogs) parameterized by \(p\)
- \(Q_{[\gamma]}\) is product of reflection and transmission coefficients (transmission conditions)
- \(n_{[\gamma]}\) is number of dynamic analogs

Definition

The length spectrum satisfies the *principal amplitude injectivity condition* if given two closed rays \(\gamma_1\) and \(\gamma_2\) with the same period and disjoint equivalence classes (so they must have different ray parameters \(p_1\) and \(p_2\), then

\[
n_{[\gamma_1]} Q_{[\gamma_1]} |p_1^{-2} \partial_p \alpha(p_1)|^{-1/2} \neq n_{[\gamma_2]} Q_{[\gamma_2]} |p_2^{-2} \partial_p \alpha(p_2)|^{-1/2}
\]

ensuring recovery of \(T\).
Theorem

Fix any $\varepsilon > 0$ and $K \in \mathbb{N}$, and let $c_\tau(r)$ be an admissible family of profiles with discontinuities at $r_k(\tau)$ for all $k = 1, \ldots, K$. Let $\text{blsp}(\tau)$ denote the basic length spectrum with the wave speed profile c_τ. Suppose $\text{blsp}(\tau)$ is countable for all τ. Let $S(\tau)$ be any collection of countable subsets of \mathbb{R} indexed by τ.

If $\text{blsp}(\tau) \cup S(\tau) = \text{blsp}(0) \cup S(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$, then $c_\tau = c_0$ and $r_k(\tau) = r_k(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$ and $k = 1, \ldots, K$.
Corollary (Length spectral rigidity with two polarizations)

Fix any $\varepsilon > 0$ and $K \in \mathbb{N}$, and let $c^i_\tau(r)$ with both $i = 1, 2$ be an admissible family of profiles with discontinuities at $r_k(\tau)$ for all $k = 1, \ldots, K$. Consider all periodic rays which are geodesics within each layer and satisfy the usual reflection or transmission conditions at interfaces, but which can change between the wave speed profiles c^1_τ and c^2_τ at any reflection and transmission. Suppose that the length spectrum of this whole family of geodesics, denoted by $\text{lsp}(\tau)$, is countable in the ball $B(0, 1)$.

If $\text{lsp}(\tau) = \text{lsp}(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$, then $c^i_\tau = c^i_0$ for both $i = 1, 2$ and $r_k(\tau) = r_k(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$ and $k = 1, \ldots, K$.

M.V. de Hoop (Rice University)
Theorem (Spectral rigidity with moving interfaces)

Fix any $\varepsilon > 0$ and $K \in \mathbb{N}$, and let $c_\tau(r)$ be an admissible family of profiles with discontinuities at $r_k(\tau)$ for all $k = 1, \ldots, K$. Suppose that the length spectrum for each c_τ is countable in the ball $\bar{B}(0, 1) \subset \mathbb{R}^3$. Assume also that the length spectrum satisfies the principal amplitude injectivity condition and the periodic conjugacy condition.

Suppose $\text{spec}(\tau) = \text{spec}(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$. Then $c_\tau = c_0$ and $r_k(\tau) = r_k(0)$ for all $\tau \in (-\varepsilon, \varepsilon)$ and $k = 1, \ldots, K$.

trace formula – possible periodic broken rays γ_0, say, with gliding

- gliding occurs at only one interface; this is ensured by the Herglotz condition
- there is a sequence of periodic non-gliding broken rays γ_i so that $\gamma_i \to \gamma_0$; subtlety lies in ensuring periodicity of the approximating rays
“near” phase boundaries, Earth’s surface

Love and Rayleigh waves: local recovery

Stoneley → Rayleigh
Earth as a unit ball $B_1 = B(0, 1)$; there is a global diffeomorphism, ϕ

$$\phi : B_1 \setminus \{0\} \to S^2 \times \mathbb{R}$$

$$\phi(B_r) = S^2 \times \left\{1 - \frac{1}{r}\right\}, \ r \neq 0$$

- for an open and bounded subset $U \subset S^2$, the cone region, $\{(\Theta, r) \mid \Theta \in U, \ 0 < r < 1\}$, is diffeomorphic to $U \times \mathbb{R}^{-}$; we can find global coordinates for U and we may consider our system on the domain $S^2 \times \mathbb{R}^{-}$
- more generally, we consider the system on any Riemannian manifold of the form $M = \partial M \times \mathbb{R}^{-}$ with metric

$$g = \begin{pmatrix} g' & 0 \\ 0 & 1 \end{pmatrix}$$

- for a “nice” domain Ω, a neighborhood of the boundary is diffeomorphic to M, where the metric g' is the induced metric of the boundary of Ω
Rayleigh waves/modes have long/widely been used to study Earth’s crust and upper mantle (Dorman & Ewing, 1962).

Empirically it has been established that “phase velocities” or eigenvalues (fundamental mode and overtones) at a few discrete frequencies are insufficient data to determine both P- and S-wave speeds (Lamé parameters).

It is now common practice to add data: “H/V” related to the components of the trace of modes, and information from body waves/modes.

setting

- for uniqueness: Jost function or spectral data at two distinct frequencies
- analysis for a finite (crust, upper mantle) slab beneath a traction-free surface (half space, flat earth)

Lamé parameters depend on the surface/boundary normal coordinate only
some history

inverse boundary value problem on a bounded, Lipschitz subdomain of \mathbb{R}^3

Nakamura & Uhlmann (1994) proved uniqueness assuming that the Lamé parameters are C^∞ and that the shear modulus is close to a positive constant.

Eskin & Ralston (2002) proved a related result.

Beretta, dH, Francini, Vessella & Zhai (2017) proved uniqueness and Lipschitz stability of such an inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.
Rayleigh system

\[
\frac{d}{dx}\left(\mu \frac{dw_1}{dx} - \xi \mu w_2\right) - \xi \lambda \frac{dw_2}{dx} + (\omega^2 - \xi^2(\lambda + 2\mu)) w_1 = 0
\]

\[
\frac{d}{dx}\left((\lambda + 2\mu) \frac{dw_2}{dx} + \xi \lambda w_1\right) + \xi \mu \frac{dw_1}{dx} + (\omega^2 - \xi^2 \mu) w_2 = 0
\]

\(x \in [0, \infty),\) supplemented with the (traction) boundary conditions

\[
\left.\left(\mu \frac{dw_1}{dx} - \xi \mu w_2\right)\right|_{x=0^+} = \chi_1 = 0
\]

\[
\left.\left((\lambda + 2\mu) \frac{dw_2}{dx} + \xi \lambda w_1\right)\right|_{x=0^+} = \chi_2 = 0
\]

write \(\chi = (\chi_1, \chi_2)^T\)

\(x\) is boundary normal coordinate

notation: use \(\xi\) for both \(|\xi| \in \mathbb{R}_+\) and its values in \(\mathbb{C}\) following analytic continuation
Lamé parameters normalized by density

Assumption

We let \(\mu \geq \alpha_0 > 0, 2\mu + 3\lambda \geq \beta_0 > 0, \lambda, \mu \in C^3(\mathbb{R}^+) \) and \(\lambda(x) = \lambda_0, \mu(x) = \mu_0 \) for \(x \geq H \).

\(H \) signifies thickness of slab
Markushevich transform

let G be a 2×2-matrix solving the Cauchy problem,

$$G' = \frac{1}{2} LG, \quad G(0) = I_2$$

where I_2 is the unit matrix,

$$L = \begin{pmatrix} 0 & -d \\ -c & 0 \end{pmatrix} \quad \text{with} \quad c = \frac{1}{g_0} \frac{\mu(\lambda + \mu)}{(\lambda + 2\mu)}, \quad d = -2g_0 \left(\frac{1}{\mu} \right)''$$

$$\det G(x) = 1$$

g_0 stands for an arbitrary positive constant; it is convenient to put $g_0 = \mu_0$
(inverse) Markushevich transform

\[
\mathcal{M}^{-1}(F) = \begin{pmatrix} \frac{w_1}{w_2} \end{pmatrix} \quad \text{with} \quad \mathcal{M}^{-1} = \begin{pmatrix} \frac{d}{d\chi} & 1 & \mu_0 & 0 \\ -\xi & 0 & \mu & \lambda + 2\mu \end{pmatrix} \begin{pmatrix} 0 \\ \mu \end{pmatrix}, \quad (G^T)^{-1}
\]

original system reduces to the matrix Sturm-Liouville form

\[
F'' - \xi^2 F = QF, \quad x \in (0, \infty)
\]
\[
F' + \Theta F = (D^a)^{-1} \chi, \quad x = 0; \quad \Theta = \Theta(\xi) = (D^a(\xi))^{-1} C^a(\xi)
\]

\[
D^a(\xi) = \begin{pmatrix} -2\mu_0 \frac{\mu'(0)}{\mu(0)} & \frac{\mu(0)}{0} \\ -2\mu_0 \xi & 0 \end{pmatrix}, \quad C^a(\xi) = \begin{pmatrix} \mu_0 \left(2\xi^2 - \frac{\omega^2}{\mu(0)} + \frac{\mu''(0)}{\mu(0)} \right) - \frac{\mu'(0)\mu(0)}{\lambda(0) + 2\mu(0)} \\ 2\mu_0 \xi \frac{\mu'(0)}{\mu(0)} - \xi \frac{\mu^2(0)}{\lambda(0) + 2\mu(0)} \end{pmatrix}
\]

\[Q\] is the matrix-valued potential: \[Q = (G^{-1}BG)^T, \quad B = B_1 + \omega^2 B_2\]
adjoint problem

\[(\mathcal{M}^a)^{-1}(F^a) = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \quad \text{with} \quad (\mathcal{M}^a)^{-1} = \begin{pmatrix} 0 & -\xi \\ 1 & \frac{d}{dx} \end{pmatrix} \begin{pmatrix} 1 & -2\mu_0 \left(\frac{1}{\mu}\right)' \\ 0 & \frac{\mu_0}{\mu} \end{pmatrix} \]

original system transforms to the matrix Sturm-Liouville form

\[(F^a)'' - \xi^2 F^a = Q^a F^a, \quad x \in (0, \infty)\]

\[(F^a)' + \Theta^a F^a = D^{-1} \chi, \quad x = 0; \quad Q^a = Q^T, \quad \Theta^a = \Theta^T(\xi) = D^{-1}(\xi) C(\xi)\]

\[D(\xi) = \begin{pmatrix} 0 & -2\xi\mu_0 \\ \mu(0) & 0 \end{pmatrix}\]

\[C(\xi) = \begin{pmatrix} \frac{\mu^2(0)}{(\lambda(0) + 2\mu(0))} & 0 \\ -\mu'(0) & \frac{\mu_0}{\mu(0)} \left(2\mu(0)\xi^2 - \omega^2 - 2\left(\frac{\mu'(0)}{\mu(0)}\right)^2 + \mu''(0)\right) \end{pmatrix}\]
denote \(Q(x) \) for \(x \geq H \) by \(Q_0(x) \)

\[
Q_0(x) = \omega^2 \begin{pmatrix}
-\frac{1}{\mu_0} & 0 \\
0 & -\frac{1}{\lambda_0 + 2\mu_0}
\end{pmatrix}
\]

\[
+ \omega^2 \frac{c_0}{\mu_0} \begin{pmatrix}
-G_{12}^H \left[-\frac{c_0}{2} G_{11}^H(x - H) + G_{21}^H\right] & G_{11}^H \left[-\frac{c_0}{2} G_{11}^H(x - H) + G_{21}^H\right] \\
-G_{12}^H \left[-\frac{c_0}{2} G_{12}^H(x - H) + G_{22}^H\right] & G_{12}^H \left[-\frac{c_0}{2} G_{11}^H(x - H) + G_{21}^H\right]
\end{pmatrix}
\]

extend \(Q_0 = Q_0(x) \) to \(x \in (0, H] \), linear in \(x \);

\[
V(x) = Q(x) - Q_0(x), \quad V(x) = 0 \text{ for } x \geq H
\]

Definition

A real matrix-valued potential, \(Q \), is of Lamé type if it can be generated from Lamé parameters according to the Markushevich transform. Due to the Assumption, \(Q \in C^1(\mathbb{R}_+) \cap L^\infty(\mathbb{R}_+) \).
boundary determination

The Lamé parameters at $x = 0$ and $x \geq H$, that is, $\lambda(0)$, $\mu(0)$ as well as $\mu'(0)$, $\mu''(0)$ and λ_0 and μ_0 are encoded in, and determine Θ independently of Q

we will not consider the problem of boundary determination
solutions to reference equations: \(-F'' + Q_0 F = -\xi^2 F\) and \(-(F^a)' + Q_0^T F^a = -\xi^2 F^a\)

\[
F_{P,0}^\pm = \left(\begin{array}{c}
-\frac{c_0}{2} G_{11}^H(x - H) + G_{21}^H \pm i q_P \frac{\mu_0}{\omega^2} G_{11}^H \\
-\frac{c_0}{2} G_{12}^H(x - H) + G_{22}^H \pm i q_P \frac{\mu_0}{\omega^2} G_{12}^H
\end{array} \right) e^{\pm i x q_P}
\]

\[
F_{S,0}^\pm = -\mu_0 \frac{\xi}{\omega^2} \begin{pmatrix} G_{11}^H \\ G_{12}^H \end{pmatrix} e^{\pm i x q_S}
\]

and

\[
F_{S,0}^{a,\pm} = \left(\begin{array}{c}
-\frac{c_0}{2} G_{12}^H(x - H) + G_{22}^H \mp i q_S \frac{\mu_0}{\omega^2} G_{12}^H \\
\frac{c_0}{2} G_{11}^H(x - H) - G_{21}^H \mp i q_S \frac{\mu_0}{\omega^2} G_{11}^H
\end{array} \right) e^{\pm i x q_S}
\]

\[
F_{P,0}^{a,\pm} = \mu_0 \frac{\xi}{\omega^2} \begin{pmatrix} G_{12}^H \\ -G_{11}^H \end{pmatrix} e^{\pm i x q_P}
\]

quasi-momenta

\[
q_P = \sqrt{\frac{\omega^2}{\lambda_0 + 2\mu_0} - \xi^2}
\]

\[
q_S = \sqrt{\frac{\omega^2}{\mu_0} - \xi^2}
\]

cut complex plane

\[
\mathcal{K} = \mathbb{C} \setminus \left(\left[-\frac{\omega}{\sqrt{\mu_0}}, \frac{\omega}{\sqrt{\mu_0}} \right] \cup i\mathbb{R} \right)
\]
• Riemann surface \(\mathcal{R} \) is obtained for both \(q_P \) and \(q_S \) by joining the separate Riemann surfaces for \(q_P \) and \(q_S \) so that \(q_P \) and \(q_S \) are single-valued holomorphic functions of \(\xi \).

• \(\mathcal{R} \) is a four-fold cover of the plane; the part of \(\mathcal{R} \) where \(\text{Im} \ q_P > 0, \text{Im} \ q_S > 0 \) is the physical (“upper”) sheet \(\mathcal{K}_+ = \mathcal{K}_{S,+} \).

• \(\zeta = \xi^2 \) (“energies”); \(\text{Im} \ q_S(\zeta) > 0, \text{Im} \ q_P(\zeta) > 0 \) for \(\zeta \in \Pi_+ \),

\[
\Pi_+ = \mathbb{C} \setminus \left(-\infty, \frac{\omega^2}{\mu_0} \right]
\]
Jost solutions

Jost solutions, F_P^\pm, F_S^\pm are determined by the conditions

$$F_P^\pm = F_P^\pm, \quad F_S^\pm = F_S^\pm$$

for $x \geq H$

define the matrix Jost solution as

$$F(x, \xi) = [F_P^+, F_S^+]$$

and the Jost function (at the boundary, $x = 0$) as

$$F_\Theta(\xi) = F'(0, \xi) + \Theta(\xi)F(0, \xi)$$
Jost solutions

Jost solutions, F^\pm_P, F^\pm_S are determined by the conditions

$$F^\pm_P = F^\pm_P, \quad F^\pm_S = F^\pm_S, \quad \text{for} \quad x \geq H$$

define the matrix Jost solution as

$$F(x, \xi) = \begin{bmatrix} F^+_P & F^+_S \end{bmatrix}$$

and the Jost function (at the boundary, $x = 0$) as

$$F_{\Theta}(\xi) = F'(0, \xi) + \Theta(\xi)F(0, \xi)$$

similarly for the adjoint problem

$$F^a_{\Theta}(\xi) = \begin{pmatrix} -2\frac{\mu_0}{\xi} & 0 \\ \frac{\mu'(0)}{\mu(0)} & -\frac{\mu(0)}{2\mu_0} \xi \end{pmatrix} F_{\Theta}(\xi)$$
Weyl solution

\[\Phi(x, \xi) = F(x, \xi)[F_\Theta(\xi)]^{-1} \]

Weyl matrix

\[M(\xi) = \Phi(0, \xi) = F(0, \xi)[F_\Theta(\xi)]^{-1} \]

\[M(\xi)F_\Theta(\xi) = F(0, \xi), \text{ whence } M(\xi) \text{ can be identified with the Robin-to-Dirichlet map} \]

associated with the matrix Sturm-Liouville problem
Weyl matrix

Weyl solution
\[\Phi(x, \xi) = F(x, \xi)[F_\Theta(\xi)]^{-1} \]

Weyl matrix
\[M(\xi) = \Phi(0, \xi) = F(0, \xi)[F_\Theta(\xi)]^{-1} \]

\[M(\xi)F_\Theta(\xi) = F(0, \xi), \text{ whence } M(\xi) \text{ can be identified with the } \textit{Robin-to-Dirichlet map} \]

associated with the matrix Sturm-Liouville problem

\[M^a = M^T \]

\(M \) (det) has a finite number (from asymptotics) of simple poles, at \(\xi_1, \ldots, \xi_N \) (guided modes)

Assumption

The parameter functions, \(\lambda \) and \(\mu \), are such that there is no pole of \(M(\xi) \) with \(\text{Im } q_S = 0 \) except, possibly, at \(\xi = \frac{\omega}{\sqrt{\mu_0}} \) as a one-sided limit in \(K_+ \).
\[\hat{M}(\zeta(\xi)) = M(\xi), \zeta(\xi) = \xi^2 \]

Lemma

The matrix \(\hat{M} \) admits the representation

\[
\hat{M}(\zeta) = \int_{-\infty}^{\infty} \frac{\hat{T}(\eta)}{\zeta - \eta} \, d\eta + \sum_{j=1}^{N} \frac{\alpha_j}{\zeta - \zeta_j}, \quad \zeta \in \Pi_+ \setminus \Lambda', \quad \Lambda' = \{\zeta_1, \ldots, \zeta_N\}
\]

where

\[
\alpha_j = \text{Res}_{\xi=\zeta_j} \hat{M}(\zeta) = F(0, \xi_j) u_j, \quad u_j = 2\xi_j \text{Res}_{\xi=\xi_j} [F_{\Theta}(\xi)]^{-1}
\]

or

\[
\alpha_j = -[u_j^a]^T \int_0^{\infty} [F^a(x, \xi_j)]^T F(x, \xi) \, dx \, u_j, \quad u_j^a = 2\xi_j \text{Res}_{\xi=\xi_j} [F_{\Theta}^a(\xi)]^{-1}
\]

or

\[
\alpha_j = F(0, \xi_j) (F'_{\Theta}(\xi_j))^{-1} = -i\frac{\mu_0}{\omega^2} \left[(F^a_{\Theta}(-\xi_j))^T \right]^{-1} \begin{pmatrix} q_P(\xi_j) & 0 \\ 0 & -q_s(\xi_j) \end{pmatrix} (F'_{\Theta}(\xi_j))^{-1}
\]
\[\hat{M}(\zeta(\xi)) = M(\xi), \zeta(\xi) = \xi^2 \]

and \(\hat{T} = \hat{T}(\xi), \hat{T}(\zeta(\xi)) = T(\xi) \) with

\[T(\xi) = -\frac{\xi \mu_0}{\pi \omega^2} \left[(F^a_\Theta)^{-1}(-\xi) \right]^{-1} \begin{pmatrix} q_P(\xi) & 0 \\ 0 & -q_S(\xi) \end{pmatrix} \begin{pmatrix} 0 \\ -q_S(\xi) \end{pmatrix} \]

signifying the branch cut.

\(\alpha_j \) and \(T \) can be expressed in terms of the Jost function only, thus the Lemma indicates that the Jost function encodes the boundary spectral data.
unique recovery

- we assume that H, λ_0, μ_0, $\mu(0)$ and $\mu'(0)$ are known
- introduce the expansion of the Jost solution at the boundary

\[F(0, \xi) = \xi G_0(0, \xi) + G_1(0) + R(\xi), \quad R(\xi) = O \left(\frac{1}{|\xi|} \right) \]

we can construct explicit expressions for $G_0(0, \xi)$ and $G_1(0, \xi)$

Lemma

Given λ_0 and μ_0. The mapping from G^H to $(G_0(0, \xi), G_1(0, \xi))$ for any pair of frequencies, $\omega_1 \neq \omega_2 \in \mathbb{R}_+$, is an injection.

thus $(G_0(0, \xi), G_1(0, \xi))$ for any pair of frequencies, $\omega_1 \neq \omega_2$ determine G^H; moreover, G^H together with H, λ_0, μ_0 and ω determine Q_0
unique recovery

as \(\lambda_0, \mu_0 \) are known, the Jost function determines the Weyl matrix

Proposition

Given \(G^H \). For \(\omega \) fixed, let \(V_1, V_2 \) be compactly supported on \([0, H]\) and belong to \(L^1([0, H])\) with associated Weyl matrices \(M_1, M_2 \). If \(H, \lambda_0, \mu_0, \mu(0) \) and \(\mu'(0) \) are known and the Assumptions hold true, then \(M_2(\xi) = M_1(\xi) \) for all \(\xi \in \mathcal{K}_+ \) implies that \(V_2 = V_1 \).

proof: Gel’fand-Levitan-type equation, with some complications

thus, \(G^H \) together with \(M(\xi) \) determine \(V \)
by implication, \((G_0(0, \xi), G_1(0, \xi))\) for any two frequencies \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\) and \(M(\xi)\) determine \(Q\).

Theorem

Let \(Q_1, Q_2\) be of Lamé type with associated Jost functions \(F_{\Theta;1}, F_{\Theta;2}\). Assume that \(H, \lambda_0, \mu_0, \mu(0)\) and \(\mu'(0)\) are known. Then \(F_{\Theta;2}(\xi) = F_{\Theta;1}(\xi)\) for all \(\xi \in \mathcal{K}_+\) and any pair of frequencies, \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\), subject to the Assumptions, implies that \(Q_2 = Q_1\).

Furthermore, from a Lamé-type \(Q\) for any pair of frequencies, \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\), one can recover \(\lambda\) and \(\mu\).
unique recovery

by implication, \((G_0(0, \xi), G_1(0, \xi))\) for any two frequencies \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\) and \(M(\xi)\) determine \(Q\)

Theorem

Let \(Q_1, Q_2\) be of Lamé type with associated Jost functions \(F_{\theta;1}, F_{\theta;2}\). Assume that \(H, \lambda_0, \mu_0, \mu(0)\) and \(\mu'(0)\) are known. Then \(F_{\theta;2}(\xi) = F_{\theta;1}(\xi)\) for all \(\xi \in \mathcal{K}_+\) and any pair of frequencies, \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\), subject to the Assumptions, implies that \(Q_2 = Q_1\).

furthermore, from a Lamé-type \(Q\) for any pair of frequencies, \(\omega_1 \neq \omega_2 \in \mathbb{R}_+\), one can recover \(\lambda\) and \(\mu\)

- we need both the Weyl matrix and the Jost solution at the boundary for the unique recovery of Lamé parameters
- assuming that \(\lambda_0\) and \(\mu_0\) are known, the Jost function determines the Weyl matrix and the Jost solution at the boundary

reconciling seismology with analysis
(Love and) Rayleigh resonances
leaky modes: Rayleigh resonances

- Rosenbaum (1960)
- Phinney (1961) – theoretical study of leaky waves, referred to as pseudo-P modes
- Haddon (1986) – evaluation of the response of a layered elastic medium to an explosive point source (\sim resolvent) using leaking modes
- Schröder & Scott (2001) – study of complex conjugate roots of the Rayleigh equation
- García-Jerez & Sánchez-Sesma (2014) – P-SV leaky waves
- Gao, Xia & Pan (2014)
\[
\frac{d}{dZ} \left(\mu \frac{dw_1}{dZ} \right) + i\xi \left(\frac{d}{dZ} (\mu w_2) + \lambda \frac{dw_2}{dZ} \right) + \left(\omega^2 - \xi^2 (\lambda + 2\mu) \right) w_1 = 0
\]
\[
\frac{d}{dZ} \left((\lambda + 2\mu) \frac{dw_2}{dZ} \right) + i\xi \left(\frac{d}{dZ} (\lambda w_1 + \mu \frac{dw_1}{dZ}) + (\omega^2 - \xi^2 \mu) w_2 \right) = 0
\]

\(Z \in (-\infty, 0] \), supplemented with the (traction) boundary conditions

\[
\chi_1 = \left(\mu \frac{dw_1}{dZ} + i\xi \mu w_2 \right) \bigg|_{Z=0^-} =: a(w) = 0
\]
\[
\chi_2 = \left((\lambda + 2\mu) \frac{dw_2}{dZ} + i\xi \lambda w_1 \right) \bigg|_{Z=0^-} =: b(w) = 0
\]

\(Z \) is boundary normal coordinate

notation: use \(\xi \) for both \(|\xi| \in \mathbb{R}_+ \) and its values in \(\mathbb{C} \) following analytic continuation
Lamé parameters normalized by density

Assumption

We let \(\mu \geq \alpha_0 > 0, \ 2\mu + 3\lambda \geq \beta_0 > 0, \lambda, \mu \in C^3(\mathbb{R}^-); \lambda(Z) = \lambda_0, \ \mu(Z) = \mu_0 \) for \(Z \leq -H \).

\(H \) signifies thickness of slab, \(Z_I := -H \)

quasi-momenta

\[
q_P = \sqrt{\frac{\omega^2}{\lambda_0 + 2\mu_0} - \xi^2}
\]

\[
q_S = \sqrt{\frac{\omega^2}{\mu_0} - \xi^2}
\]
Riemann surface basics

- Riemann surface \mathcal{R} is obtained for both q_P and q_S by joining the separate Riemann surfaces for q_P and q_S so that q_P and q_S are single-valued holomorphic functions of ξ.
- \mathcal{R} is a four-fold cover of the plane; the sheets of \mathcal{R},

$$\mathcal{R} = \mathcal{R}^{++} \cup \mathcal{R}^{+-} \cup \mathcal{R}^{-+} \cup \mathcal{R}^{--} = \bigcup_{\sigma_1, \sigma_2} \mathcal{R}_{\sigma_1, \sigma_2}, \quad (\sigma_1, \sigma_2) = (\text{sign} \text{Im} q_P, \text{sign} \text{Im} q_S)$$

to a point $\xi \in \mathcal{R}$ we may associate the two values $q_S(\xi), q_P(\xi)$ and can determine a mapping $\mathcal{R} \rightarrow \mathcal{R}$ by its action on $q_S(\xi), q_P(\xi)$; thus, we define mappings, w_P, w_S and $w_{SP} : \mathcal{R} \rightarrow \mathcal{R}$

$$q_S(w_S(\xi)) = -q_S(\xi), \quad q_P(w_S(\xi)) = q_P(\xi)$$
$$q_S(w_P(\xi)) = q_S(\xi), \quad q_P(w_P(\xi)) = -q_P(\xi)$$
$$q_S(w_{SP}(\xi)) = -q_S(\xi), \quad q_P(w_{SP}(\xi)) = -q_P(\xi)$$

relations, between the sheets of the Riemann surface, map a point $\xi \in \mathcal{R}$ to another point in \mathcal{R}.
Jost solutions f_P^\pm, f_S^\pm for $Z < 0$ satisfy the conditions

$$f_P^\pm = f_P^{\pm,0}, \quad f_S^\pm = f_S^{\pm,0} \quad \text{for} \quad Z < Z_I$$

where

$$f_P^\pm = \begin{pmatrix} f_P^{\pm,1} \\ f_P^{\pm,2} \end{pmatrix} = \begin{pmatrix} \xi \\ \pm q_P \end{pmatrix} e^{\pm i Z q_P}, \quad Z < Z_I$$

$$f_S^\pm = \begin{pmatrix} f_S^{\pm,1} \\ f_S^{\pm,2} \end{pmatrix} = \begin{pmatrix} \pm q_S \\ -\xi \end{pmatrix} e^{\pm i Z q_S}, \quad Z < Z_I$$

extend $\mu(Z)$, $\lambda(Z)$ as even functions to $Z > 0$; with these, extend the system to the real line by abuse of notation, we use the same notation, f_P^\pm, f_S^\pm, for the Jost solutions satisfying the evenly extended system.
boundary matrix

denote

\[\mathcal{B} = \begin{pmatrix} a(f_P^-) & a(f_S^-) \\ b(f_P^-) & b(f_S^-) \end{pmatrix}, \quad \mathcal{B} = \mathcal{B}(\xi) \]

signifying the \textit{boundary matrix} representing boundary tractions induced by the Jost solutions.

the boundary matrix determines the Jost function via the inverse Markushevich transform assuming that \(\mu(0), \mu'(0) \) and \(\mu_0 \) are known.

Rayleigh determinant

\[\Delta = \det \mathcal{B} \]
decomposition into entire functions

define

\[\vartheta_P = \frac{1}{2} (f_P^+ + f_P^-), \quad \varphi_P = \frac{1}{2q_P} (f_P^+ - f_P^-), \quad \vartheta_S = \frac{1}{2} (f_S^+ + f_S^-), \quad \varphi_S = \frac{1}{2q_S} (f_S^+ - f_S^-) \]

boundary matrix takes the form

\[\mathcal{B} = \begin{pmatrix} a(\vartheta_P) & a(\vartheta_S) \\ b(\vartheta_P) & b(\vartheta_S) \end{pmatrix} - \begin{pmatrix} a(\varphi_P) & a(\varphi_S) \\ b(\varphi_P) & b(\varphi_S) \end{pmatrix} \begin{pmatrix} q_P & 0 \\ 0 & q_S \end{pmatrix} \]

Rayleigh determinant takes the form

\[\Delta = d_1 + q_P d_2 + q_S d_3 + q_P q_S d_4 \]

where

\[d_1 = \det \begin{pmatrix} a(\vartheta_P) & a(\vartheta_S) \\ b(\vartheta_P) & b(\vartheta_S) \end{pmatrix}, \quad d_2 = -\det \begin{pmatrix} a(\varphi_P) & a(\vartheta_S) \\ b(\varphi_P) & b(\vartheta_S) \end{pmatrix} \]

\[d_3 = -\det \begin{pmatrix} a(\vartheta_P) & a(\varphi_S) \\ b(\vartheta_P) & b(\varphi_S) \end{pmatrix}, \quad d_4 = \det \begin{pmatrix} a(\varphi_P) & a(\varphi_S) \\ b(\varphi_P) & b(\varphi_S) \end{pmatrix}; \]
decomposition into entire functions

\[\vartheta_P = \frac{1}{2} (f_P^+ + f_P^-), \quad \varphi_P = \frac{1}{2q_P} (f_P^+ - f_P^-), \quad \vartheta_S = \frac{1}{2} (f_S^+ + f_S^-), \quad \varphi_S = \frac{1}{2q_S} (f_S^+ - f_S^-) \]

boundary matrix takes the form

\[\mathcal{B} = \begin{pmatrix} a(\vartheta_P) & a(\vartheta_S) \\ b(\vartheta_P) & b(\vartheta_S) \end{pmatrix} - \begin{pmatrix} a(\varphi_P) & a(\varphi_S) \\ b(\varphi_P) & b(\varphi_S) \end{pmatrix} \begin{pmatrix} q_P & 0 \\ 0 & q_S \end{pmatrix} \]

Rayleigh determinant takes the form

\[\Delta = d_1 + q_P d_2 + q_S d_3 + q_P q_S d_4 \]

where

\[d_1 = \det \begin{pmatrix} a(\vartheta_P) & a(\vartheta_S) \\ b(\vartheta_P) & b(\vartheta_S) \end{pmatrix}, \quad d_2 = - \det \begin{pmatrix} a(\varphi_P) & a(\vartheta_S) \\ b(\vartheta_P) & b(\vartheta_S) \end{pmatrix} \]

\[d_3 = - \det \begin{pmatrix} a(\vartheta_P) & a(\varphi_S) \\ b(\vartheta_P) & b(\varphi_S) \end{pmatrix}, \quad d_4 = \det \begin{pmatrix} a(\varphi_P) & a(\varphi_S) \\ b(\varphi_P) & b(\varphi_S) \end{pmatrix}; \quad S = \det \begin{pmatrix} a(\varphi_S) & a(\vartheta_S) \\ b(\varphi_S) & b(\vartheta_S) \end{pmatrix} \]
intermediate function, Rayleigh resonances

\[F(\xi) = \Delta(\xi)\Delta(w_S(\xi))\Delta(w_P(\xi))\Delta(w_{PS}(\xi)). \]

is in a Cartwright class \((\mathbb{C}_{4H})\)

Rayleigh resonance “frequencies” are the zeros of the Rayleigh determinant; they are grouped in sets

\[\Sigma_{++}, \Sigma_{+-}, \Sigma_{-+}, \Sigma_{--} \]

on the four sheets, \(\mathcal{R}_{++}, \mathcal{R}_{+-}, \mathcal{R}_{-+}, \mathcal{R}_{--}\); that is,

\[
\begin{align*}
\Delta(\xi_j) &= 0, \quad \xi_j \in \Sigma_{++}, \\
\Delta(w_P(\xi_j)) &= 0, \quad \xi_j \in \Sigma_{-+}, \\
\Delta(w_S(\xi_j)) &= 0, \quad \xi_j \in \Sigma_{+-}, \\
\Delta(w_{PS}(\xi_j)) &= 0, \quad \xi_j \in \Sigma_{--}
\end{align*}
\]

the set \(\Sigma_{++}\) corresponds with Regge “bound states”
recovery

- F can be recovered from resonance frequencies (Hadamard factorization)
- S can be recovered from “frequencies” at which no mode conversion occurs

Conjecture

The boundary matrix can be recovered from the resonance frequencies and S.

recovery follows from applying the theorem for spectral data
Lemma

On the Riemann surface \mathcal{R}, the following holds true

\[f_P^\pm (Z, w_P(\xi)) = f_P^\pm (Z, w_{PS}(\xi)) = f_P^{\mp}(Z, \xi), \]
\[f_S^\pm (Z, w_S(\xi)) = f_S^\pm (Z, w_{PS}(\xi)) = f_S^{\mp}(Z, \xi). \]
identify \mathcal{R}^{++} where $\text{Im } q_P > 0$, $\text{Im } q_S > 0$ with the physical (or “upper”) sheet for q_S

$$\mathcal{K}^{++} = \left\{ \xi \in \mathcal{K}_S = \mathbb{C} \setminus \left(\left[-\frac{\omega}{\sqrt{\mu_0}}, \frac{\omega}{\sqrt{\mu_0}} \right] \cup \mathbb{i} \mathbb{R} \right) : \text{Re } \xi > 0 \right\}$$

on \mathcal{K}^{++} we have $\text{Im } q_P > \text{Im } q_S$