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1 Introduction
• 1916, K. Schwarzschild finds a solution to the Einstein equation describing the

universe around a static and spherically symmetric distribution of mass.

• In 1943, P.C. Vaidya [3] solves a long standing open problem in general relativity:
finding a modification of the Schwarzschild metric in order to allow for a radiating
mass.

• Vaidya’s metric is a spherically symmetric solution to the Einstein equations with
matter in the form of null dust.

• Vaidya’s spacetime has been used a lot to construct explicit models of gravitational
collapse, by gluing it to parts of Minkowski and Schwarzschild’s spacetime. See the
book by J.B. Griffiths and J. Podolsky [2], section 9.5, for a very clear presentation
of the metric and an excellent account of the history of these investigations.

• There has been numerous studies of the geometry of Vaidya’s spacetime, but they
appear to have been mostly numerical. What I shall present here an analytic study
of some geometrical features of Vaidya’s spacetime. It is a joint work with Armand
Coudray who is also in Brest. The paper has appeared in General Relativity and
Gravitation in 2021 [1]. The origin of this work is the observation that Vaidya’s
spacetime is a simple modification of Schwarzschild’s universe for which we know
very well the localisation of the event horizons. Can we understand precisely where
the horizons are located for Vaidya’s spacetime? Then this turned into a general
study of some classes of null and timelike curves on Vaidya’s spacetime that give a
rather precise description of the geometry of this universe.

2 Schwarzschild’s spacetime
First non trivial solution of the Einstein equations. Found by Karl Schwarzschild just one
year after the publication of general relativity. In Schwarzschild coordinates (t, r, θ, ϕ)

g =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2dω2 .

Two apparently singular regions : {r = 0} and {r = 2M}. The curvature scalar

K = RabcdRabcd =
48M2

r6
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blows up at r = 0 which is therefore a true curvature singularity.
The set {r = 2M} is just a coordinate singularity. We can use more adapted coordi-

nates such as the Eddington-Finkelstein coordinates.

• The Regge-Wheeler coordinate and optical functions.

The function r∗ = r + 2M log(r − 2M) is such that

dr∗
dr

=

(
1− 2M

r

)−1
and therefore

g =

(
1− 2M

r

)
(dt2 − dr2∗)− r2dω2 .

This variable is very important for constructing scattering theories on Schwarzschild’s
spacetime as it is the correct radial coordinate for a comparison with Minkowski
space near infinity ; using the variable r would introduce artificial long-range differ-
ences. We have two optical functions

u = t− r∗ , v = t+ r∗

whose gradients generate future oriented null geodesics (outgoing for u and incoming
for v).

g =

(
1− 2M

r

)
dudv − r2dω2

we have a double null foliation by spherically symmetric null hypersurfaces generated
bu the integral lines of ∇u and ∇v.

• Outgoing Eddington-Finkelstein coordinates.

They are the coordinates (u, r, θ, ϕ), where u = t− r∗

g =

(
1− 2M

r

)
du2 + 2dudr − r2dω2 .

The metric g does not degenerate at r = 2M however its restriction to r = 2M is
a 2-metric instead of a 3-metric, hence {r = 2M} is a null hypersurface : the past
event horizon H −.

• Conformal compactification.

Performing an inversion in r, i.e. putting R = 1/r and rescaling the metric as
ĝ = R2g, we get

ĝ =
(
R2 − 2MR

)
du2 − 2dudR− dω2 .

The hypersurface {R = 0} now appears as a regular null hypersurface for ĝ, similar
to the horizon ; it is future null infinity, denoted I +.
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• Incoming Eddington-Finkelstein coordinates.

This construction can be done identically with the coordinates (v, r, θ, ϕ), where
v = t+ r∗

g =

(
1− 2M

r

)
dv2 − 2dvdr − r2dω2 ,

ĝ =
(
R2 − 2MR

)
dv2 + 2dvdR− dω2 .

In this manner, we construct H + and I −. Draw a picture.

• The event horizons are teleological.

The future event horizon for instance is defined as the future boundary of the past
of I +. Locating it requires to know the history of the universe up to its infinite
future. Conversely, the past event horizon is the past boundary of the future of I −

and locating it requires to know the history of the universe down to its infinite past.

3 Vaidya’s spacetime

3.1 Assumptions, metric, curvature

Vaidya’s spacetime can be defined from the expression of the Schwarzschild metric in
outgoing or incoming Eddington-Finkelstein coordinates, simply assuming that the mass
depends on the retarded (resp. advanced) time. In the outgoing case, we have

g =

(
1− 2M(u)

r

)
du2 + 2dudr − r2dω2 .

Of course this no longer satisfies the Einstein vacuum equations, but the remarkable thing
is that the error is in the form of the stress energy tensor of null dust radiating along the
integral lines of ∇u, i.e. tangent to the lines of constant u and ω. If the energy of the dust
is positive, which is a natural assumption, then we would expect the mass to decrease. In
the incoming case, positive energy incoming null dust would correspond to an increase in
the mass.

The incoming case describes a collapsing black hole or a black hole that is accret-
ing matter. The outgoing case describes an evaporating white hole (this is a classical
evaporation). One is simply the time-reversed version of the other.

Note that in our work we assume that

M is a smooth function of the retarded time u . (1)

This is not a point of detail, it changes the situation quite seriously. Some people chose
for instance to study the complete evaporation of a white hole with a brutal ending, i.e.
M reaches zero in finite retarded time and with a non zero derivative. In this case, the
mass function is merely Lipschitz (at the brutal end of the evaporation). We have made
the choice to avoid such situations. This is based on some physical intuition that may or
may not be correct.
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We work with the following assumption (draw a picture) :

lim
u→±∞

M(u)→M± with 0 ≤M+ < M− < +∞ . (2)

This means that we focus on the case of an evaporating white hole that sta-
bilises in finite or infinite time either to a Schwarzschild black hole of that
evaporates completely.

We put

F = 1− 2M(u)

r
.

The Weyl tensor has Petrov type D and the double principle null directions are

V =
∂

∂r
, W =

∂

∂u
− 1

2
F
∂

∂r
. (3)

These are similar to roots of a polynomial with their multiplicity. They have a natural
and easy description in terms of spinors ; the tensorial condition is

Cabc[dVe]V
bV c = Cabc[dWe]W

bW c = 0 .

In vacuum, the Goldberg-Sachs Theorem entails that they generate null geodesics but
this does not apply here. We have, as in the Schwarzschild case, two congruences of null
lines that describe the skeleton of the conformal curvature. They are in fact geodesics as
the principal null vector fields turn out to be the gradients of two optical functions.

• One of these congruences is simply given by the curves of constant u and ω.

• The second one does not have a simple expression in terms of u, r.

The curvature scalar (Kretschmann scalar) is given by

k = RabcdR
abcd = CabcdC

abcd =
48M(u)2

r6
. (4)

3.2 Where are the event horizons?

This is the question that got us working on this topic in the first place. More precisely,
where are the event horizons compared to the Schwarzschild event horizons? Are they
beyond or beneath the Schwarzschild horizons, do they coincide on some domains?

First consider a simple case where the evaporation is restricted to a compact interval
of retarded time and M+ > 0. Draw a picture. The future horizon is easily described
as we are in a Schwarzschild region that encompasses the infinite future of the universe ;
it is the {r = 2M+} hypersurface. The past horizon is harder to describe globally. In
the past Schwarzschild region, it is described by r = 2M− but as soon as we enter the
radiation region, this stops being valid. However, we know that an event horizon is a null
hypersurface. So using the spherical symmetry, we can describe the past event horizon
by a simple ODE. It is the hypersurface generated by the family of curves indexed by
ω ∈ S2:

γ(u) = (u, r = r(u), ω) , u ∈ R , (5)
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that are such that
r(u) = 2M− for u ≤ u−

and have the property of being null, i.e. (Eikonal equation)

g(γ̇(u), γ̇(u)) = 1− 2M(u)

r(u)
+ 2ṙ(u) = 0 . (6)

Hence, the function r(u) satisfies the following ordinary differential equation

ṙ(u) = −1

2

(
1− 2M(u)

r(u)

)
, (7)

with r > 0 and r(u) = 2M− for u ≤ u−.

Remark 3.1. We see from (7) that

γ̇(u) =

(
1,−1

2

(
1− 2M(u)

r(u)

)
, 0

)
=

∂

∂u
− F

2

∂

∂r
,

i.e. the null generator of the past horizon is the principal null vector field W .

If we drop the assumption that the radiation happens only for a finite retarded time
interval, we have the following generalised Cauchy problem to solve :

Find a function rh satisfying (7) and such that lim
u→−∞

rh(u) = 2M− . (8)

Using merely the Cauchy-Lipschitz (or Picard-Lindelöf) Theorem and a priori estimates,
we can prove the existence and uniqueness of this solution and get precise results on the
location and asymptotic behaviour of rh and all the other solutions to (7).

3.3 Properties of solutions of (7)

Lemma 3.1. On an interval ]u0, u1[ on which Ṁ(u) does not vanish everywhere, r(u)
cannot be identically equal to 2M(u).

and moreover

Lemma 3.2. Let (]u1, u2[, r) be a solution to (7) such that, for a given u0 ∈]u1, u2[, we
have r(u0) ≥ 2M(u0). Let us assume that Ṁ(u) < 0 for all u ∈]u1, u2[, then r(u) > 2M(u)
on ]u0, u2[.

For our main theorem, we add the following assumption

Ṁ(u) < 0 on ]u−, u+[ , −∞ ≤ u− < u+ ≤ +∞ , Ṁ ≡ 0 elsewhere, (9)

in order to avoid the multiplication of cases.

Theorem 1. Under Assumptions (1), (2) and (9), there exists a unique maximal solution
rh to (7) such that

lim
u→−∞

rh(u) = 2M− .
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• If either M+ > 0 or u+ = +∞, rh exists on the whole real line, rh(u) → 2M+ as
u→ +∞ and any other maximal solution r to (7) belongs to either of the following
two categories:

1. r exists on the whole real line, r(u) > rh(u) for all u ∈ R, limu→−∞ r(u) = +∞
and limu→+∞ r(u) = 2M+;

2. r exists on ]u0,+∞[ with u0 ∈ R and satisfies: r(u) < rh(u) for all u ∈
]u0,+∞[, limu→u0 r(u) = 0 and limu→+∞ r(u) = 2M+.

• If M+ = 0 and u+ < +∞, rh exists on an interval ] −∞, u0[ with u+ ≤ u0 < +∞
and limu→u0 rh(u) = 0. The other maximal solutions are of two types:

1. r exists on ] − ∞, u1[ with u0 ≤ u1 < +∞, r(u) > rh(u) on ] − ∞, u0[,
limu→u1 r(u) = 0 and limu→−∞ r(u) = +∞;

2. r exists on ]u1, u2[ with −∞ < u1 < u2 ≤ u0, r(u)→ 0 as u tends to either u1
or u2 and r(u) < rh(u) on ]u1, u2[.

3.4 The two optical functions

The function u is an optical function, which means that its gradient is a null vector field,
or equivalently that u satisfies the eikonal equation

g(∇u,∇u) = 0 . (10)

An important property of optical functions is :

Lemma 3.3. Let ξ be an optical function and denote L = ∇ξ. The integral curves of L
are geodesics and L corresponds to a choice of affine parameter, i.e.

∇LL = 0 .

Proof. The proof is direct :

∇LLb = ∇∇ξ∇bξ ,

= ∇aξ∇a∇bξ ,

= ∇aξ∇b∇aξ since the connection is torsion-free,
= ∇b (∇aξ∇aξ)−

(
∇b∇aξ

)
∇aξ ,

= 0−∇aξ∇a∇bξ since ∇ξ is null and the connection torsion-free,
= −∇∇ξ∇bξ .

Proposition 3.1. The integral lines of V are affinely parametrised null geodesics; they
are the outgoing principal null geodesics of Vaidya’s spacetime.

We now establish the existence of a second optical function.

6



Proposition 3.2. There exists a function v defined on Ru×]0,+∞[r×S2
ω, depending solely

on u and r, such that ∇v is everywhere tangent to the integral lines of W . This means
that g(∇v,∇v) = 0, i.e. v is an optical function. The integral lines of W are therefore
null geodesics and their congruence generates the level hypersurfaces of v ; they are the
incoming principal null geodesics of Vaidya’s spacetime.

Proof. The metric g can be written as

g = Fdu
(
du+ 2F−1dr

)
− r2dω2 ,

but contrary to the Schwarzschild case, du + 2F−1dr is not exact. We introduce an
auxiliary function ψ > 0 and we write

g =
F

ψ
du

(
ψdu+ 2ψF−1dr

)
− r2dω2 .

Our purpose is to find conditions on ψ that ensure that the 1-form α := ψdu+2ψF−1dr is
exact. Since we work in the variables (u, r) on the simply connected domain Ru×]0,+∞[r,
all that is required is that α be closed, i.e. that

dα = 2
∂

∂u

(
ψ

F

)
− ∂ψ

∂r
= 0 .

This is equivalent to ψ satisfying an ODE with potential along the integral lines of W
which is easy to integrate.

∂ψ

∂u
− F

2

∂ψ

∂r
+

2

F

Ṁ

r
ψ = 0 .

3.5 Case of a complete evaporation in infinite time

We now assume that M+ = 0 and u+ = +∞. As we have established in Theorem 1, the
past event horizon ends up at r = 0 as u→ +∞ and so do all the integral curves of (7),
i.e. all the incoming principal null geodesics. From this, we infer the following theorem.

Theorem 2. Whatever the speed at which M(u) → 0 as u → +∞, we have a null
singularity of the conformal structure in the future of our spacetime. More precisely, the
Kretschmann scalar k does not remain bounded as u → +∞ along any integral line of
(7).

Proof. Consider (]u0,+∞[, r) a maximal solution to (7), with u0 ∈ R ∪ {−∞}.
Assume that k remains bounded along the integral line as u→ +∞. Then, using (4), so
does M/r3 and it follows that M/r tends to 0 as u → +∞ along the integral line. This
implies in turn that ṙ(u)→ −1/2 as u→ +∞, which contradicts the fact that r(u)→ 0
as u→ +∞.
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Remark 3.2. If we assume that along the integral lines of (7), ṙ(u) has a limit as
u → +∞, this limit is necessarily zero in order not to contradict the fact that r(u) → 0
as u→ +∞. This implies in turn that along the integral line,

M(u)

r(u)
→ 1

2
as u→ +∞ ,

i.e.
r(u) ' 2M(u) as u→ +∞ (11)

and
k ' 3

4M(u)4
as u→ +∞ . (12)

Question : this singularity is for u → +∞ but is it really asymptotic or can it be
reached in finite proper time? We do not have a complete answer to this question but we
have constructed families of uniformly timelike curves that are radial and that reach the
singularity in infinite proper time.

4 Conclusion
The analytic information we obtain on the incoming principal null geodesics and the con-
struction of the second optical function are precise enough to allow to study the asymp-
totic behaviour of fields near null infinity and even in some cases to construct scattering
theories (by means of conformal methods). These are projects that Armand is currently
developing.

A point of connection with the topic of the conference is the quasi normal modes (i.e.
resonances) of dynamic black holes, which appear to be an essentially open problem. Why
should we study the resonances on Vaidya’s spacetime? Well, black holes are believed
to evaporate (this is a quantum phenomenon). If the evaporation is very slow, it is
likely that it can be neglected and that the resonances that are activated when some
massive body falls into the black hole at those of the stationary spacetime. But if the
evaporation is fast enough, maybe the resonances will differ from those of a static black
hole spacetime. To understand this, a good model for a first study could be Vaidya’s
spacetime, although the nature of the evaporation is quite different to the quantum effect.
The question is not time symmetric. The best in this case is probably to define resonances
on a hyperboloidal foliation that is transverse to I +. In the case of an infinitely long
and complete evaporation, what is the link between the asymptotic singularity and the
behaviour of dynamical resonances?

The two cases of a black hole in formation and a white hole that evaporates are both
interesting and quite different. Note that one may be the time reflexion of the other, but
there is something odd in considering an initial asymptotic singularity from which a black
hole emerges... Causality is not time symmetric.
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