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Bismut’s presentation

When (M, g) is a riemannian manifold we may consider the duality between
L2(M; ΛT∗M) and L2(M; ΛTM) via

〈t , s〉TM,T∗M =

∫
M
t(x).s(x) dvg (x) .

This gives rise to the formal adjoint d̃ of d via

〈d̃t , s〉TM,T∗M = 〈t , ds〉TM ,T∗M .

If φ : TM → T∗M is a (fiberwise) M-isomorphism , extended to
φ : ΛTM → ΛT∗M we may define

ηφ(U,V ) = U.(φV ) , η∗φ(ω, θ) = φ−1ω.θ ,

and 〈s , s′〉φ =

∫
M
η∗φ(s(x), s′(x)) dvg (x) .

This leads to dφ the formal adjoint of d .
The Hodge codifferential d∗ is a particular case when φ = g : TM → T∗M .
This leads to a generalization of Hodge Laplacian

(ddφ + dφd) = (d + dφ)2 .
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Bismut’s presentation

(Q, g) closed compact riemannian manifold, ∇Q,g the Levi-Civita connection.
X = T∗Q

T (T∗Q) = T (T∗Q)H︸ ︷︷ ︸
TQ

⊕T (T∗Q)V︸ ︷︷ ︸
T∗Q

, T∗(T∗Q) = T∗(T∗Q)H︸ ︷︷ ︸
∼T∗Q

⊕T∗(T∗Q)V︸ ︷︷ ︸
∼TQ

.

X = T∗Q is a symplectic (σ : TX → T∗X ) and riemannian manifold
(gTX = g ⊕⊥ g−1).

φb =

(
g −bId
bId 0

)
, φ−1

b =

(
0 b−1Id

−b−1Id b−2g

)
b ∈ R∗

ηφb
(U,V ) = g(πX (U), πX (V )) + bσ(U,V ) ,

dvgTX = dvσ
loc
= |dqdp| x = (q, p) ∈ X = T∗Q

h(q, p) =
1

2
g ij (q)pipj , 〈p〉q =

√
1 + 2h .

Bismut’s Laplacian equals

B
φb
h =

1

4

(
d
φb
h + dh

)2
=

1

4
(d
φb
h dh + dhd

φb
h )

dh = e−hdeh , d
φb
h = ehdφb e−h .
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Weitzenbock type formula

REF: Bismut J AMS (2005)

The differential, Bismut’s codifferential and Bismut’s hypoelliptic Laplacian can
be defined for sections of F = ΛT∗X ⊗ π∗X f , πX : X = T∗Q → Q .

(f,∇f, gf) hermitian bundle with a flat connection.

(eg. f = C,∇f = 0 in C∞(T∗Q; L(f)), gf(z) = e2V (q)|z|2) .

Unitary connection ∇f,u = ∇f + 1
2ω(∇f, gf) .

∇Q,f connection on ΛTQ ⊗ ΛT∗Q ⊗ f made of Levi-Civita and ∇f .
∇ = π∗X (∇Q,f)

(e i )i=1...,d local basis of TQ , (e j )j=1...,d basis of T∗Q ,

ei = π∗(e i ) ∈ TXH , ê j = π∗ (e j ) ∈ TXV

dual basis e i ∈ T∗XH ∼ T∗Q , êj ∈ T∗XV ∼ TQ ,

B
φb
h =

1

4b2

[
−∆V + |p|2q −

1

2
〈RTQ(ei , ej )ek , e`〉e ie j iêk ê` + NV − NH

]
−

1

2b

[
LYh +

1

2
ω(∇f, g f)(Y h) +

1

2
e i iêjω(∇f, g f)(ej )

+
1

2
ω(∇f, g f)(ei )∇ê i

]
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Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)

Weighted L2-space: Take gΛT∗X = 〈p〉−NH+NV
q π∗X (gΛT∗Q ⊗ gΛTQ)

e i = dqi︸︷︷︸
∝〈p〉−1/2

q

, êj = dpj︸︷︷︸
∝〈p〉1/2

q

−Γk
ji (q)pk dqi︸︷︷︸

∝〈p〉−1/2
q

and dvgTX = |dqdp| .

Order of differential operators: ∂
∂qi

: 1 , ∂
∂pj

: 1
2

, pj × : 1
2

.
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ei =
∂

∂qi︸︷︷︸
order 1

+Γk
ij (q) pk︸︷︷︸

order 1
2

∂

∂pj︸︷︷︸
order 1

2

, êj =
∂

∂pj︸︷︷︸
order 1

2

, 〈p〉
∂

∂pj︸ ︷︷ ︸
order1
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Sobolev spaces : W r (X ;F ):

∩rW r (X ;F ) = S(X ;F ) , ∪rW r (X ;F ) = S ′(X ;F ) .

(u ∈ Wn(X ;F ))⇔
(
〈p〉2n1

q (∂q)α(〈p〉∂p)βu ∈ L2(X ;F ) , |α|+ |β|+ n1 ≤ n
)
.
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REF: Port. Math. (2005) Ann. Inst. Fourier (2007)

Weighted L2-space: Take gΛT∗X = 〈p〉−NH+NV
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Symbols: M(q, p) symbol of order m iff

‖∂αq ∂βp M(q, p)‖L(F ) ≤ Cα,β〈p〉
m−|β|
q ,
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Geometric Kramers-Fokker-Planck operator:

−b∇Yh
+O +M

Yh = g ij (q)pjei = g ij (q)pi (
∂

∂qi
+ Γk

i`(q)pk
∂

∂pk
) ,

O =
−∆V + |p|2q

2
=
−gij (q)∂2

pi pj
+ g ij (q)pipj

2
M =M0,j∇ ∂

∂pj

+M0,ipi +M0,0 , M0,∗ symbols of order 0 .
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2

+ O︸︷︷︸
order 1

+ M︸︷︷︸
order 1

2

Yh = g ij (q)pjei = g ij (q)pi (
∂

∂qi
+ Γk
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∂
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−∆V + |p|2q

2
=
−gij (q)∂2

pi pj
+ g ij (q)pipj

2
M =M0,j∇ ∂

∂pj

+M0,ipi +M0,0 , M0,∗ symbols of order 0 .



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985),
Hörmander (Book IV-Chap 27)
“cuspidal” semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N.
(2018)

By using the metric gΛT∗X = 〈p〉−NH+NV
q π∗X (gT∗Q⊗gΛTQ) , Bismut’s Laplacian

2b2B
φb
h (b ∈ R∗ fixed) is a GKFP-operator.

The operator K = Cb + 2b2B
φb
h is cuspidal

e−tK = 1
2iπ

∫
Γ

e−tz

(z−K)
dz for t > 0 .
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There exists Cb > 0 and for any r ∈ R , Cr,b > 0 such that

‖Os‖Wr +‖∇Yh s‖Wr +‖s‖Wr+2/3 +〈λ〉1/2‖s‖Wr ≤ Cr,b‖(Cb+2b2B
φb
h −iλ)s‖Wr .

The operator Cb + 2b2B
φb
h is maximal accretive endowed with

D(2b2B
φb
h ) =

{
s ∈ L2(X ;F ) , B

φb
h s ∈ L2(X ;F )

}
.

The operator K = Cb + 2b2B
φb
h is cuspidal

e−tK = 1
2iπ

∫
Γ

e−tz

(z−K)
dz for t > 0 .
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Hörmander (Book IV-Chap 27)
“cuspidal” semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N.
(2018)

There exists Cb > 0 and for any r ∈ R , Cr,b > 0 such that

‖Os‖Wr +‖∇Yh s‖Wr +‖s‖Wr+2/3 +〈λ〉1/2‖s‖Wr ≤ Cr,b‖(Cb+2b2B
φb
h −iλ)s‖Wr .

The operator Cb + 2b2B
φb
h is maximal accretive endowed with

D(2b2B
φb
h ) =

{
s ∈ L2(X ;F ) , B

φb
h s ∈ L2(X ;F )

}
.

The operator K = Cb + 2b2B
φb
h is cuspidal

e−tK = 1
2iπ

∫
Γ

e−tz

(z−K)
dz for t > 0 .
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Let Q− = Q− t Q′ be a riemannian (compact) manifold with boundary Q′ . Let

Q = Q− t Q′ t Q+ be the double of Q− with the continous piecewise C∞
metric (in Q(−ε,ε) ∼ (−ε, ε)× Q′)

gTQ = (dq1)2 + m(|q1|, q′) = (dq1)2 + mi′j′ (|q1|, q′)dqi
′
dqj
′
, 1 6∈

{
i ′, j ′

}
.

The flat case corresponds to m = m(0, q′) (totally geodesic boundary).

For the elliptic Laplacian on Q− , Dirichlet boundary conditions correspond to

odd elements of D(∆Hodge
Q ) for the involution (q1, q′)→ (−q1, q′) and Neumann

boundary condition to even elements of D(∆Hodge
Q ) .

Note that in the general case ∂q1m is not continuous and the Christoffel symbols

Γk
ij are discontinuous along Q′ =

{
q1 = 0

}



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Heuristics

Let Q− = Q− t Q′ be a riemannian (compact) manifold with boundary Q′ . Let

Q = Q− t Q′ t Q+ be the double of Q− with the continous piecewise C∞
metric (in Q(−ε,ε) ∼ (−ε, ε)× Q′)

gTQ = (dq1)2 + m(|q1|, q′) = (dq1)2 + mi′j′ (|q1|, q′)dqi
′
dqj
′
, 1 6∈

{
i ′, j ′

}
.

The flat case corresponds to m = m(0, q′) (totally geodesic boundary).

For the elliptic Laplacian on Q− , Dirichlet boundary conditions correspond to

odd elements of D(∆Hodge
Q ) for the involution (q1, q′)→ (−q1, q′) and Neumann

boundary condition to even elements of D(∆Hodge
Q ) .

Note that in the general case ∂q1m is not continuous and the Christoffel symbols

Γk
ij are discontinuous along Q′ =

{
q1 = 0

}



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Heuristics

Let Q− = Q− t Q′ be a riemannian (compact) manifold with boundary Q′ . Let

Q = Q− t Q′ t Q+ be the double of Q− with the continous piecewise C∞
metric (in Q(−ε,ε) ∼ (−ε, ε)× Q′)

gTQ = (dq1)2 + m(|q1|, q′) = (dq1)2 + mi′j′ (|q1|, q′)dqi
′
dqj
′
, 1 6∈

{
i ′, j ′

}
.

The flat case corresponds to m = m(0, q′) (totally geodesic boundary).

For the elliptic Laplacian on Q− , Dirichlet boundary conditions correspond to

odd elements of D(∆Hodge
Q ) for the involution (q1, q′)→ (−q1, q′) and Neumann

boundary condition to even elements of D(∆Hodge
Q ) .

Note that in the general case ∂q1m is not continuous and the Christoffel symbols

Γk
ij are discontinuous along Q′ =

{
q1 = 0

}



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Heuristics

Let Q− = Q− t Q′ be a riemannian (compact) manifold with boundary Q′ . Let

Q = Q− t Q′ t Q+ be the double of Q− with the continous piecewise C∞
metric (in Q(−ε,ε) ∼ (−ε, ε)× Q′)

gTQ = (dq1)2 + m(|q1|, q′) = (dq1)2 + mi′j′ (|q1|, q′)dqi
′
dqj
′
, 1 6∈

{
i ′, j ′

}
.

The flat case corresponds to m = m(0, q′) (totally geodesic boundary).

For the elliptic Laplacian on Q− , Dirichlet boundary conditions correspond to

odd elements of D(∆Hodge
Q ) for the involution (q1, q′)→ (−q1, q′) and Neumann

boundary condition to even elements of D(∆Hodge
Q ) .

Note that in the general case ∂q1m is not continuous and the Christoffel symbols

Γk
ij are discontinuous along Q′ =

{
q1 = 0

}



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Heuristics

With X = T∗Q the natural involution on (q1, q′)→ (−q1, q′) in Q(−ε,ε) leads to

Σ : (q1, q′, p1, p
′)→ (−q1, q′,−p1, p

′)

In the flat case with e i = dqi , ê1 = dp1 , êj′ = dpj′ − Γk′
j′ i′ (0, q′)pk′dq

i′ ,

Σ∗(s
J
I (q1, q′, p1, p

′)e I êJ) = (−1)|{1}∩I |+|{1}∩J|sJI (−q1, q′,−p1, p
′)e I êJ .

Proposal of boundary conditions for B
φb
h on X− = π−1

X Q− , in the general case

s = sJI (q1, q′, p1, p
′)e I êJ

Dirichlet sJI (0, q′, p1, p
′) = −(−1)|{1}∩I |+|{1}∩J|sJI (0, q′,−p1, p

′)

Neumann sJI (0, q′, p1, p
′) = +(−1)|{1}∩I |+|{1}∩J|sJI (0, q′,−p1, p

′)
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j′ i′ (0, q′)pk′dq

i′ ,

Σ∗(s
J
I (q1, q′, p1, p
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But remember êj = dpj − Γk
ij (q)pkdq

i are not continuous in the general case .



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Subelliptic estimate with a totally geodesic boundary

When g = (dq1)2 + m(0, q′) in Q(−ε,ε) , one defines a closed operator B
φb
h,∓ in

L2(X−;F ) by the condition(
s ∈ D(B

φb
h,∓)

)
⇔
(
sev ∈ D(B

φb
h )
)

sev = s1X− (x)∓(Σ∗s)1X+ (x) .

In the flat case Q is a C∞ closed and compact riemannian manifold.

B
φb
h is the usual Bismut’s Laplacian. Lebeau’s maximal subelliptic estimates

ensure D(B
φb
h ) ⊂ W2/3(X ) .

With 2/3 > 1/2 , any s ∈ D(B
φb
h ) (in particular sev ) has a trace along

X ′ = π−1
X (Q′) .

Additionally for all s ∈ D(B
φb
h,∓) ,

‖Os‖+‖Ys‖+‖s‖W2/3 + 〈λ〉1/2‖s‖+‖s
∣∣
X ′‖L2(X ′) ≤ Cb|(Cb + 2b2B

φb
h,∓− iλ)s‖ .

where the measure on X ′ is |p1||dq′dp| .



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Subelliptic estimate with a totally geodesic boundary

When g = (dq1)2 + m(0, q′) in Q(−ε,ε) , one defines a closed operator B
φb
h,∓ in

L2(X−;F ) by the condition(
s ∈ D(B

φb
h,∓)

)
⇔
(
sev ∈ D(B

φb
h )
)

sev = s1X− (x)∓(Σ∗s)1X+ (x) .

In the flat case Q is a C∞ closed and compact riemannian manifold.

B
φb
h is the usual Bismut’s Laplacian. Lebeau’s maximal subelliptic estimates

ensure D(B
φb
h ) ⊂ W2/3(X ) .

With 2/3 > 1/2 , any s ∈ D(B
φb
h ) (in particular sev ) has a trace along

X ′ = π−1
X (Q′) .

Additionally for all s ∈ D(B
φb
h,∓) ,

‖Os‖+‖Ys‖+‖s‖W2/3 + 〈λ〉1/2‖s‖+‖s
∣∣
X ′‖L2(X ′) ≤ Cb|(Cb + 2b2B

φb
h,∓− iλ)s‖ .

where the measure on X ′ is |p1||dq′dp| .



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Subelliptic estimate with a totally geodesic boundary

When g = (dq1)2 + m(0, q′) in Q(−ε,ε) , one defines a closed operator B
φb
h,∓ in

L2(X−;F ) by the condition(
s ∈ D(B

φb
h,∓)

)
⇔
(
sev ∈ D(B

φb
h )
)

sev = s1X− (x)∓(Σ∗s)1X+ (x) .

In the flat case Q is a C∞ closed and compact riemannian manifold.

B
φb
h is the usual Bismut’s Laplacian. Lebeau’s maximal subelliptic estimates

ensure D(B
φb
h ) ⊂ W2/3(X ) .

With 2/3 > 1/2 , any s ∈ D(B
φb
h ) (in particular sev ) has a trace along

X ′ = π−1
X (Q′) .

Additionally for all s ∈ D(B
φb
h,∓) ,

‖Os‖+‖Ys‖+‖s‖W2/3 + 〈λ〉1/2‖s‖+‖s
∣∣
X ′‖L2(X ′) ≤ Cb|(Cb + 2b2B

φb
h,∓− iλ)s‖ .

where the measure on X ′ is |p1||dq′dp| .



Boundary
conditions
for the hy-
poelliptic
Laplacian

Francis
Nier,

LAGA,
Univ.

Paris 13
Joint work

with
S. Shen

The hy-
poelliptic
Laplacian

Subelliptic
estimates

Boundary
conditions

Commutation

Subelliptic estimate general boundary

REF:N. Mem. AMS (2018)

Keep the boundary conditions

Dirichlet sJI (0, q′, p1, p
′) = −(−1)|{1}∩I |+|{1}∩J|sJI (0, q′,−p1, p

′)

Neumann sJI (0, q′, p1, p
′) = +(−1)|{1}∩I |+|{1}∩J|sJI (0, q′,−p1, p

′)

for s = sJI e
I êJ .

One defines a closed maximal accretive operator B
φb
h,∓ in L2(X−,F ) with those

boundary conditions. Moreover the following estimate holds for all

s ∈ D(B
φb
φb,∓) .

To be compared with the flat case (or Lebeau’s result for closed compact
manifold)

‖Os‖+‖Ys‖+‖s‖W2/3 +〈λ〉1/2‖s‖+‖s
∣∣
X ′‖L2(X ′) ≤ Cb‖(Cb +2b2B

φb
h,∓− iλ)s‖ .
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The curvature problem

When ∂q1m(0−, q′) 6= 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
(dq1)2 + m(|q1|, q′) .

At first sight the frames

e i∓ = dqi , êj,∓ = dpj − Γk
j,i (0∓, q′)pkdq

i

are discontinuous.

This is solved by using g
∣∣
∂Q′ = g0

∣∣
∂Q′ , gTX = π∗X (gTQ ⊕ gT∗Q) and identifying

êj,− with êj,+ along X ′ . Parallel transport along e1 on both sides allows to
introduce a continuous piecewise C∞ vector bundle structure for which traces of
smooth enough elements makes sense.

This is used in two steps,
Parallel transport on X = T∗Q provides non symplectic coordinates (q̃, p̃) such that

g ij (q)pipj = g ij
0 (q̃)p̃i p̃j .

Parallel transport on ΛT∗Q ⊗ ΛTQ is lifted via π∗X .

Lebeau’s spaces Ws are preserved for s ∈ [−1, 1] by those changes of gauge.
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êj,− with êj,+ along X ′ . Parallel transport along e1 on both sides allows to
introduce a continuous piecewise C∞ vector bundle structure for which traces of
smooth enough elements makes sense.

This is used in two steps,
Parallel transport on X = T∗Q provides non symplectic coordinates (q̃, p̃) such that

g ij (q)pipj = g ij
0 (q̃)p̃i p̃j .

Parallel transport on ΛT∗Q ⊗ ΛTQ is lifted via π∗X .

Lebeau’s spaces Ws are preserved for s ∈ [−1, 1] by those changes of gauge.
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The curvature problem

However one ends with GKFP operator with discontinuous coefficients in the
perturbative term

M =M2,j∇∂pj +M2,0

where the M2,∗ are more over symbols of degree 2 (on both sides X− and X+) .

The vertical weight is treated first and one can prove via an integration by part
and conjugation with 〈p〉nq ,

〈p〉n+1
q (Cb + 2b2B

φb
g,h)−1〈p〉−n

q ∈ L(L2(X ;F )) .

Lebeau’s maximal subelliptic estimate with the exponent 2/3 > 1/2 is now
crucial while using some bootstrap regularity arguments after applying several
resolvents, with

‖M0,j∇∂pj s‖Wr−1/2 ≤ ‖s‖Wr r − 1/2 ≥ 1/6(r ≥ 2/3) ,

combined with the one dimensional multiplication rule for Sobolev spaces

ϕ ∈W r−1/2,2(R)⇒ (1R+ (q1)ϕ ∈W r−1/2−0,2(R))) , r − 1/2 ≥ 1/6 > 0 .
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Boundary conditions for dg ,h and dφbg ,h

REF: Joint work with S. Shen (21)

When s ∈ L2
loc and ds ∈ L2

loc , s admits partial (tangential) traces along any
hypersurface.

The boundary condition that we take for the differential are

sJI ′ (0, q′, p1, p
′) = ∓(−1)|J∩{1}|sJI ′ (0, q′,−p1, p

′) 1 6∈ I ′

and for Bismut’s codifferential

s
{1}∪J′
I (0, q′, p1, p

′) = ∓(−1)× (−1)|{1}∩I |s
{1}∪J′
I (0, q′,−p1, p

′) .

Those boundary conditions lead to closed realization of dg,h,∓ and d
φb
g,h,∓

(adjoint to each other for φb or tφb duality products).

Unusual thing: The boundary conditions on dg,h,∓ depend on the metric gTQ .
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Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)

True: dg,h ◦ dg,h = 0 , d
φb
g,h ◦ d

φb
g,h = 0 .

Not true: B
φb
g,h = d

φb
g,hdg,h + dg,hd

φb
g,h .

Not true: D(B
φb
g,h) ⊂ D(dg,h) ∩ D(d

φb
g,h) .

True: D(B
φb
g,h) ∩ C∞0 (X−;F ) ⊂ D(dg,h) ∩ D(d

φb
g,h) .

True: There is a common core D ⊂ C∞0 (X−;F ) for dg,h and B
φb
g,h such that

∀s ∈ D , B
φb
g,hdg,hs = dg,hBg,hs .

True: There is a common core Dφb for d
φb
g,h and B

φb
g,h... BUT Dφb 6= D
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Commutation with the resolvent

REF: Joint work with S. Shen (21),
Amrein-Boutet de Monvel-Georgescu (C0-group and commutator techniques)

For any t > 0 , e
−tB

φb
h,∓ sends L2(X ;F ) to D(dh,∓) ∩ D(d

φb
g,h,∓) and

∀s ∈ D(dg,h,∓) , e
−tB

φb
h,∓dg,h,∓s = dg,h,∓e

−tB
φb
h,∓ s

∀s ∈ D(d
φb
g,h,∓) , e

−tB
φb
h,∓d

φb
g,h,∓s = d

φb
g,h,∓e

−tB
φb
h,∓ s

Consequence: For any z 6∈ Spec(B
φb
g,h) ,

∀s ∈ D(dg,h,∓) (z − B
φb
g,h)−1dg,hs = dg,h(z − B

φb
g,h)−1s ,

∀s ∈ D(d
φb
g,h,∓) (z − B

φb
g,h)−1d

φb
g,hs = d

φb
g,h(z − B

φb
g,h)−1s .


	The hypoelliptic Laplacian
	Subelliptic estimates
	Boundary conditions
	Commutation

