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Bismut’s presentation

Boundary

conditions When (M, g) is a riemannian manifold we may consider the duality between
7 Gl L2(M; AT*M) and L2(M; ATM) via
poelliptic
Laplacian
(t, 5>TM,T*M = /M t(X).S(X) dvg(x) .
This gives rise to the formal adjoint d of d via
(dt,s)rm,1em = (t, dS)m 1op -
::;.K.c If ¢ : TM — T*M is a (fiberwise) M-isomorphism, extended to
LeplEetm ¢: NTM — AT*M we may define

ne(U, V) =U.(¢V) , ni(w,0) =0 1w.o,
and (s, s )y = /M 05 (s(x),s"(x)) dvg(x).

This leads to d? the formal adjoint of d.
The Hodge codifferential d* is a particular case when ¢ = g: TM — T*M.
This leads to a generalization of Hodge Laplacian

(dd® + d?d) = (d + d?)2.
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Bismut’s presentation

i‘;‘;’:szz (Q, g) closed compact riemannian manifold, V@€ the Levi-Civita connection.
for the hy- X=T"Q
poe\lip.tic
Laplacian T(T* Q) — T(T* Q)H D T(T* Q)V , T*(T* Q) — T*(T* Q)H D T*(T* Q)V .
—_——— ——— —_———— —
TQ T*Q ~T*Q ~TQ
X = T*Q is a symplectic (o : TX — T*X) and riemannian manifold
(gTX =8 ot gil)-
The hy- ., (g —bld -1 0 b~11d
Fepiacan b= <b1d o )+ % =(bta b2g) PEE
ne, (U, V) = g(mx(U), mx(V)) + bo(U, V),
dvgrx = dve < |dgdp| x =(q,p) € X = T*Q
1 .
’ b(a,p) = S&"(a)pip; , (Pla=V1+20
Bismut's Laplacian equals
(o) 1 (o] 2 1 [ lo]
By* = 2 (dhb + dh) = Z(dhbdh + dydy )

dy = e Ndeh ) d;)b — ehgPreh



Bismut’s presentation
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2

Bismut's Laplacian equals
b _ L ( b 2 1 4, ob
Bh = Z (dh +dh) - Z(dh dh+dhd[] )

dy = e Ndeh ) d;)b — ehgPreh
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Bismut’s presentation
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dy = e "de" | dg’” = eMdPeh .
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The hy-
poelliptic
Laplacian

Weitzenbock type formula

REF: Bismut J AMS (2005)
The differential, Bismut's codifferential and Bismut's hypoelliptic Laplacian can
be defined for sections of F = AT*X @ m4f, nx : X =T*"Q — Q.

m (f, V', g) hermitian bundle with a flat connection.

m(eg f=C,VIi=0inCc>(T"Q; L(f)) H(2) = 2V19|2]?).

= Unitary connection V" = VT + w(Vf gh).

m VT connection on ATQ ® AT*Q ® § made of Levi-Civita and V.

V= TrX(VQ’f)

e)i=

(e ..,d local basis of TQ, (gj)jzl_,_‘d basis of T*Q,
e,-:w*(g,-)eTXH , & =m(e)eTXY
dual basis e e T*X"~ T*Q |, &ecT*XV~ TQ,
i i {7 Y+ pl2 - 5</;>T@(e,.,ej)ek, er)e'eligige + NV — NH}

1 1, 1. o
—= [ + 50T, 6N(Y") + S eligw(T, 7)(e)

%w(vf,gf)(e,-)véf}
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Weitzenbock type formula

REF: Bismut J AMS (2005)
The differential, Bismut's codifferential and Bismut's hypoelliptic Laplacian can
be defined for sections of F = AT*X @ myf, nx : X =T*"Q — Q.

m (f, V', g) hermitian bundle with a flat connection.

® (eg [=C, VI =0in C®(T* Qi L(}) 8" (2) = & |2]%).
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1 V7T connection on ATQ @ NT™ Q ® f made of Levi-Civita and v

n V= rx(VQ'T)

i)i=1

(e ...d local basis of TQ, (gfl)jzll_,,d basis of T*Q,

e =7"(e )ETXH . ¥ =m(d) e TXV
dual basis e e T*X" ~ T*Q , eTXV~TQ,
1
B;fb =iz [_ + |pl2 - (RT (e e/)ex, eo)e’ ignge + NV — NH]
1

1 ;.
oz [Een + ST () 4 Selige(T1, g e)

50V, 816 V4]



Lebeau’s presentation

Boundary
conditions
for the hy-
poelliptic
Laplacian
REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted [2-space: Take g7 X = (p>;NH+NV7r;‘<(gAT*Q ®g"?)
= dg |, &= dp —Th(a)p dq
~~ ~— ~~
°<(P>q_1/2 u(p);/z °<<P>q_1/2
Subelliptic
estimates and dVgTX = |dqdp| .

Order of differential operators:

N

pj X

NI

oq" - T
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Subelliptic
estimates

Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L2-space: Take ghT X = (p);N”JrNVw}(gAT*Q ® g"Te)

e = dg . &= dp —Ti(a)px dq'
~~ ~~ ~~
o<<P>;1/2 oc(p)é/2 0<<P>(771/2

and dv,7x = |dqdp| .

: : .0 . o) 1 1
Order of differential operators: o - 1, o5, 5 o P X 5
0 o 0
6= —— 4k — g = — —
i aq U(q) Pk apj ) i apj ) <P> apj
~~ order % ~~ ~—~ N —
order 1 order 1 order 1 orderl
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Subelliptic
estimates

Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)

Weighted L2-space: Take ghT X = (p);NHJrNVw;‘((gAT*Q ®g"?)

e = dqi

, &= dp —Th(a)px dq'
~~ ~~ ~~
oc(p)g oc(pyy/? oc(p)g
and dv,7x = [dqdp|.
. . .9 . d 1 X 1
Order of differential operators: o 1, o0 5 . P X 5.
7] X 7] 0] 7]
&= —— +1iq) P - . &= -— ., (P5-
ag T S op T op pj
~ order % ~ ~ —
order 1 order 1 order 1 orderl

Sobolev spaces : W'(X; F):

NWI(X;F)=S(X;F) , UW'(X;F)=S(X;F).

(u e W"(X; F) & ((p)3™(9)"((P)Dp) u € LA(X: F), |a] + 8] + 1 < n)
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Subelliptic
estimates

Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L2-space: Take ghT X = (p);N”+NV7r§((gAT*Q ® g"T?)

= dg , &= dp —Th(a)px dq'
N - -
u(P);l/z o<(p)é/2 o<(P>;1/2

and dv,7x = [dqdp|.
Order of differential operators: 8%[ -1, o5 : % ,oPX %
Symbols: M(q, p) symbol of order m iff

10808 M(q, Pl () < Cap(p)T ",
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Subelliptic
estimates

Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted [2-space: Take g7 X = (p);N”+NV7r;(gAT*Q ®gN'?)

= dg |, &= dp —Th(q)px dq'
N - -
u(P);l/z o<(p)é/2 o<(P>;1/2

and dv,7x = [dqdp|.
Order of differential operators: 8%[ 1, o5 : % ,oP X %

Geometric Kramers-Fokker-Planck operator:
—beh +O0+M

i i 0 0
Yy =g’ (q)pjei = gl(q)p,-(a—ql. + r,'ke(q)PkaT)k),

o “Av Il _ ~&i(9)05,,, + &7(a)pip;
2 2

M= Mo;V o + Mgipi+ Moo, Mo, symbols of order 0.

0
Bpj



Boundary

conditions
for the hy-
poelliptic

Laplacian

Franci

Subelliptic
estimates

Lebeau’s presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted [2-space: Take g7 X = (p)JNHJrNVW}(gAT*Q ®g"?)

= dg |, &= dp —Th(a)p dq
~~ ~— ~~
oc(pyg /? (p)}/? oc(p)g ?

and dv,7x = [dqdp|.
Order of differential operators: 6%,. 1, 6% : % ,opjX %
Geometric Kramers-Fokker-Planck operator:

—bVy, + O + M
~ N~

order 1 order L
order % 2

) ) 9 9
Yy =g (q)pjei = g”(q)pf(aT,, + Ffe(q)pkafpk),

o_ “Aviel _ (0%, + & (apip
B 2 - 2

M= Mo;V o + Mgipi+ Moo, Mo, symbols of order 0.

e
Bpj
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Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985),

Hoérmander (Book IV-Chap 27)
“cuspidal” semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N.

(2018)

By using the metric g7 X = <p>q_N”+NVTr;‘<(gT*Q®gATQ) , Bismut's Laplacian

2b2B$" (b € R* fixed) is a GKFP-operator.

The operator K = Cp, + ZbZB“b is cuspidal

tK

e :2/‘j|’(z K)dzfort>0
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Subelliptic
estimates

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985),
Hérmander (Book 1V-Chap 27)

“cuspidal” semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N.
(2018)

There exists C, > 0 and for any r € R, G, , > 0 such that
1Oswr +IV y o slhwr +lIsllyyrez/s+ N2 llslwe < Cr ll(Co+262 BE> —iN)s|lwr| -
The operator Cp, + 2bQBg)" is maximal accretive endowed with

DQE#H:&EBMTL q%eﬁmfg.

The operator K = Cp, + ZbQB;)b is cuspidal
tz

K 1
et :ﬂjrﬁ dz for t > 0.
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Subelliptic
estimates

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985),
Hérmander (Book 1V-Chap 27)

“cuspidal” semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N.
(2018)

There exists C, > 0 and for any r € R, G, , > 0 such that
1Oswr +IV y o slhwr +lIsllyyrez/s+ N2 llslwe < Cr ll(Co+262 BE> —iN)s|lwr| -
The operator Cp, + 2bQBg)" is maximal accretive endowed with

DQE#H:&EBMTL q%eﬁmfg.

Imz

The operator K = Cp, + 2bZB,‘f" is cuspidal

—tK _ 1 e 2 N
e —mfrmdzfort>0. N




Heuristics

Boundary
conditions
for the hy-
poelliptic
Laplacian
Let Q_ = Q_ LI Q' be a riemannian (compact) manifold with boundary Q’. Let
Q@ = Q_ U Q' U Q; be the double of Q_ with the continous piecewise C>
metric (in Q_. ) ~ (—¢,6) x Q')
g’? = (dg")* + m(lq'|,a") = (da")* + mirjs(|a*], a')dg" d’ 1 & {i",j'} .
The flat case corresponds to m = m(0, q’) (totally geodesic boundary).
For the elliptic Laplacian on Q_ , Dirichlet boundary conditions correspond to
odd elements of D(AgOdge) for the involution (q',q’) — (—q',q’) and Neumann
Sk boundary condition to even elements of D(AZOdge) .
n Note that in the general case 9,1 m is not continuous and the Christoffel symbols

k i i ’_ 1_
I—,-j are discontinuous along Q' = {q = }



Heuristics

Boundary
conditions
for the hy-
poelliptic
Laplacian
Let Q_ = Q_ U @’ be a riemannian (compact) manifold with boundary Q’. Let
Q@ = Q_ U Q' UQ; be the double of Q_ with the continous piecewise C>
metric (in Q. ) ~ (—&,6) x Q')
PR o
g’ =(dg")* + m(q"],q') = (dg")* + my; (1", q')dq" dg/ ;1 ¢ {i',j'} .
The flat case corresponds to m = m(0, q’) (totally geodesic boundary).
For the elliptic Laplacian on Q_ , Dirichlet boundary conditions correspond to
odd elements of D(AgOdge) for the involution (q',q’) — (—q',q’) and Neumann
Sk boundary condition to even elements of D(Ag(’dge) .
n Note that in the general case 9,1 m is not continuous and the Christoffel symbols

k i i ’_ 1_
I',-j are discontinuous along Q' = {q = }



Heuristics

Boundary
conditions
for the hy-
poelliptic
Laplacian
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Boundary
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for the hy-
poelliptic
Laplacian
Let Q_ = Q_ U @’ be a riemannian (compact) manifold with boundary Q’. Let
Q@ = Q— U Q' U Q4 be the double of ‘Q_ with the continous piecewise C*°
metric (in Q. ) ~ (—&,6) x Q')
PR o
g’ =(dg")* + m(q"],q') = (dg")* + my; (1", q')dq" dg/ ;1 ¢ {i',j'} .
The flat case corresponds to m = m(0, q’) (totally geodesic boundary).
For the elliptic Laplacian on Q_ , Dirichlet boundary conditions correspond to
odd elements of D(AgOdge) for the involution (q',q’) — (—q',q’) and Neumann
Sk boundary condition to even elements of D(Ag(’dge) .
n Note that in the general case 8q1m is not continuous and the Christoffel symbols

k : : N %
Fij are discontinuous along Q' = {ﬂ = 0}



Heuristics

Boundary
conditions
forth.e hy—
E::\“alcplta“ri With X = T*Q the natural involution on (¢*,q’) — (—¢*,q’) in Q(—¢,z) leads to
T (qla qu P1, P/) - (_q17 q/) —P1, P/)
In the flat case with e/ = dg’, & = dp1 , & = dpj — rjk,’,,,(o. q)pwdq”
Y. (s7(q",q' pr p')e'ey) = (1)U IG) (g g/, —py, p')el e, .
Proposal of boundary conditions for B[:‘)b on X_ = 77;15, , in the general case
s=s7(q",q',p1,p)e'e,
Boundary
conditions
N Dirichlet 5/-/(0-,(‘7/;[31-,/3/): ( )Hl}ﬁl“\{l}hl\ J( q 7p1,p/)

Neumann s7(0,4', p1,p’) = +(=1){VIHHINIII (0 o —py, p)



Heuristics

Boundary
conditions
forth.e hy—
E::\“alcpg:. With X = T*Q the natural involution on (g%, ') = (—¢*,q’) in Q(_. .) leads to
> :(¢h ¢ P p) = (—q'q' —p1,p)
In the flat case with e/ = dq’, & = dp;, & = dpj — I'J’.‘,/I., (0,9")py dq’,
Y. (s7(qh, ', pr p')e'ey) = (1) VBN (g g/ —py, pl)el ey
Proposal of boundary conditions for B(:b on X_ = 77;16, , in the general case
s=s7(q",q',p1,p)e'ey
Boundary
conditions
" Dirichlet  s{(0,q, p1,p’) = —(—1)[{IVHIUNVIg) 0, ¢/, —py, p')

Neumann s7(0,4', p1,p’) = +(—=1) {0 o —py, p)



Heuristics

Boundary
conditions
forth.e hy—
ESSJ';S.Z’T, With X = T*Q the natural involution on (g%, ') = (—¢*,q’) in Q(_. .) leads to
> :(¢h ¢ P p) = (—q'q' —p1,p)
In the flat case with e/ = dq', & = dp;, & = dpjr — Fﬁ,//,,(O. q’)pk/dq"/
Y. (s7(q",q', pr p')e e)) = (1)U IG) (gt g/, —py, p')el e, .
Proposal of boundary conditions for B;b” on X_ = rr)?la, , in the general case
s=s{(q",q,p1,p')e'e,
Boundary
conditions
" Dirichlet  5/(0,q’, p1,p') = —(~1){IIFINI5/ (0, ¢, —py, p')

Neumann sj 70,4, p1,p') = +(— 1)‘{1}0"“{1}0” J(O q,—p1,p)



Heuristics

Boundary
conditions
forth.e hy—
an:‘“alztal:l With X = T*Q the natural involution on (¢', ') = (—q',¢’) in Q_. .) leads to
(¢ p1,p") = (=a',d',—p1,P)
In the flat case with e/ = dq’, & = dp; , & = dpjy — rf/,./(o, q’)pyr dqi/ .
. (s (', ' pr, p)e'ey) = (1) NIHHUNIG (gt g/ —py, p')el .
Proposal of boundary conditions for B;f" on X_ = 71’;16_ , in the general case
s=s{(q",q,p1,p')e'e,
Boundary
conditions
n Dirichlet s7(0,q', p1,p') = —(—1)VHLLINIGI (0 o' —p;, p')

Neumann  s7(0,q/, p1,p') = +(—1) (BN (0, ¢/, —py, p')

But remember & = dp; — Fg.(q)pkdq’ are not continuous in the general case.



Subelliptic estimate with a totally geodesic boundary

Boundary
conditions
for the hy-

poelliptic

i When g = (dg')? + m(0, q’) in Q(—c,) » one defines a closed operator E?”I in
L2(X_; F) by the condition
(s € D(Ef;f’q: ) 3 (sev € D(BZ’b))
Sev = slx_ (X)F(Zx8)1x, (x).

In the flat case @ is a C* closed and compact riemannian manifold.
B;”’ is the usual Bismut's Laplacian. Lebeau’s maximal subelliptic estimates

ensure D(B;") C WR/3(X).

With 2/3 > 1/2, any s € D(B;:”) (in particular se,) has a trace along
Boundar, —
conditior;vs X' = Fxl(Q/) .

" Additionally for all s € D(B}2.),

Osll+ V5]l + lIsllyyrz + (N2 lsll + lIs] g/ ll 2y < Col(Co+26°By" = iN)s]l -

where the measure on X’ is |p1||dq’dp| .



Subelliptic estimate with a totally geodesic boundary

Boundary
conditions
for the hy- ¢
E::\“alcpgf. When g = (dg')? + m(0,¢’) in Q(=-<,) » one defines a closed operator B;’:ib in
L?(X_; F) by the condition
(seD(BY)) & (s € D(B))
Sev = slx (x)F(Xss)lx, (x).
In the flat case Q is a C* closed and compact riemannian manifold.
Bg)b is the usual Bismut's Laplacian. Lebeau’s maximal subelliptic estimates
ensure D(Br?b) cW?3(x).
With 2/3 >1/2,any s € D(B;fb) (in particular se,) has a trace along
Boundary

conditions X _Tr)( (Q,)
" Additionally for all s € D(B}2.),

OS]+ 1Y+ l1sllyye/s + N 2llsll 4 15|y l2xry < Col(Co+267Bg" —iN)s]

where the measure on X’ is |p1||dq’dp| .



Subelliptic estimate with a totally geodesic boundary

Boundary
conditions

for the hy-
poelliptic

ieplben When g = (dg')? + m(0,¢’) in Q(—c,c)» one defines a closed operator E;b in
L?(X_; F) by the condition
(s € D(BY" )) & (sev € D(B{jb))
Sev = slx (x)F(Xss)lx, (x).

In the flat case @ is a C* closed and compact riemannian manifold.
B;”’ is the usual Bismut's Laplacian. Lebeau’s maximal subelliptic estimates

ensure D(B;") C W2/3(X).
With 2/3 > 1/2, any s € D(B;:”) (in particular se,) has a trace along
conitons X' =m Q).
! Additionally for all s € D(Ez),bqt),

— )
OsI+ Vsl + l1sllyye/s + (02 lsll + lIs| ol 2y < Col(Co+26°By2 = iN)s]l -

where the measure on X’ is |p1||dq’dp| .



Subelliptic estimate general boundary

Boundary
conditions
for th.e hy—
E::\!:cplte::\ REF:N. Mem. AMS (2018)
Keep the boundary conditions
Dirichlet  s/(0,¢, p1,p') = ()N (0, ¢/, —py, p')
Neumann  s/(0,q', p1,p') = +(—1) {(BNIFIINIg) (0, ¢/, —py, p')
for s = s,Je’éJ.
One defines a closed maximal accretive operator E;';_b in L2(X_, F) with those
boundary conditions. Moreover the following estimate holds for all
Boundary D E(‘)b .
conditionvs < c ( Pbs )

To be compared with the flat case (or Lebeau's result for closed compact
manifold)

1Os[|+ V5]l + lIsllyye/s + X2 llsll +lIs| 0 l2xry < Coll(Co+267By2 —iN)s]| -

b,



Subelliptic estimate general boundary

Boundary
f‘o"r"tdh';";;f REF:N. Mem. AMS (2018)
E::\“alcp.t; Keep the boundary conditions
Dirichlet s,J(O, q,p1,p) = (,I)HIMIH\{l}f‘wJ\le(O’ q,—p1,p’)
Neumann s7(0,q',p1,p') = (71)‘{1%”*‘{1}[“”5{(07 q,—p1,p")
for s = s,Je’éJ.
One defines a closed maximal accretive operator E?& in L2(X_, F) with those
boundary conditions. Moreover the following estimate
1/2 1/4 Pyl .
Boundary 1OV 25|+ sl yyass + Y41l 11(P)g sl 2y < Coll(Co+262B2 —iN)s]l,
conditions

n holds for all s € D(B¢b +)-

To be compared with the flat case (or Lebeau’s result for closed compact
manifold)

OsII+11Ysll+lsllyyz/z + A2l +lis| ol 2xy < Coll(Co+2b7Bg % —iN)s]l -



Subelliptic estimate general boundary

Boundary
fco"r"fh';";;f REF:N. Mem. AMS (2018)
f::‘“a'cp:f‘ Keep the boundary conditions
Dirichlet s,J(O, q,p1,p) = (71)“1”‘”“UmJ‘SIJ(O, q,—p1,p’)
Neumann s7(0,q',p1,p') = (71)‘{1%”*‘{1%”5{(07 q,—p1,p")
for s = s,Je’éJ.
One defines a closed maximal accretive operator Ez’f’; in L2(X_, F) with those
boundary conditions. Moreover the following estimate
_ ¢ .
B 1O 25|+ [Isll /s + N sl + 1) g sl g ll2xry < Coll(Co+2b" By —iN)sll
conditions
\ =%
holds for all s € D(Bg, ).
To be compared with the flat case (or Lebeau’s result for closed compact
manifold)

— )
O+ V51l +lIsllyy2/s + N 2llsl +lls | ll20xry < Coll(Co+267By % —iN)s]l -



The curvature problem

Boundary
conditions
for the hy-
poe\lip.t\'c
Leplbem When 9,1 m(07, q") # 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
(dg')? + m(lq*],q").
At first sight the frames
. . R B .
el =dq' , &3 =dp;—T;,(07,q")pdq’
are discontinuous.
This is solved by using g|, o, = go}aQ, L g™X = ﬂ';(gTQ ® g’ Q) and identifying
& _ with & ; along X’ . Parallel transport along e1 on both sides allows to
introduce a continuous piecewise C°° vector bundle structure for which traces of
Sk smooth enough elements makes sense.
\ This is used in two steps,

m Parallel transport on X = T*Q provides non symplectic coordinates (g, p) such that
g (q)pip; = & (Q)pip; -
m Parallel transport on AT*Q ® ATQ is lifted via 7 .

Lebeau’s spaces W* are preserved for s € [—1, 1] by those changes of gauge.
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Boundary
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for the hy-
poe\lip.t\'c
Leplbem When 9,1m(07, q") # 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
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At first sight the frames
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\ This is used in two steps,
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m Parallel transport on AT*Q ® ATQ is lifted via 7 .

Lebeau’s spaces W* are preserved for s € [—1, 1] by those changes of gauge.



The curvature problem

Boundary
conditions
for the hy-
poe\lip.t\'c
Leplbem When 9,1m(07, q") # 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
(dg')* + m(|q*],q").
At first sight the frames
. . R B .
el =dq' , &z =dp—T;,(07,q")pdq’
are discontinuous.
This is solved by using g|aQ, = g°|aQ' ,g™X = w;‘((gTQ ® g7’ Q) and identifying
&, with & | along X’ . Parallel transport along e; on both sides allows to
introduce a continuous piecewise C°° vector bundle structure for which traces of
P smooth enough elements makes sense.

\ This is used in two steps,
m Parallel transport on X = T*Q provides non symplectic coordinates (g, p) such that
g (q)pip; = & (@)pip; -
m Parallel transport on AT*Q ® ATQ is lifted via 7 .

Lebeau’s spaces W* are preserved for s € [—1, 1] by those changes of gauge.



The curvature problem

Boundary
conditions
for the hy-
poe\lip.t\'c
Leplbem When 9,1m(07, q") # 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
(dg')* + m(lq*],q").
At first sight the frames
. . R B .
el =dq' , &z =dp—T;,(07,q")pdq’
are discontinuous.
This is solved by using g|, o, = go}aQ, ,g™X = ﬂ';(gTQ ® g’ Q) and identifying
& _ with & | along X’ . Parallel transport along e1 on both sides allows to
introduce a continuous piecewise C°° vector bundle structure for which traces of
Sk smooth enough elements makes sense.
\ This is used in two steps,

m Parallel transport on X = T*Q provides non symplectic coordinates (g, p) such that
g"(q)pip; = &5 (§)bip; -
m Parallel transport on AT*Q ® ATQ is lifted via 7wy .

Lebeau’s spaces W* are preserved for s € [—1, 1] by those changes of gauge.



The curvature problem

Boundary
conditions
for the hy-
poe\lip.t\'c
Leplbem When 9,1m(07, q") # 0 the Christoffel symbols and actually the second
fundamental form are discontinuous for the continuous metric
(dg')* + m(lq*],q").
At first sight the frames
. . R B .
el =dq' , &z =dp—T;,(07,q")pdq’
are discontinuous.
This is solved by using g|, o, = go}aQ, ,g™X = ﬂ';(gTQ ® g’ Q) and identifying
& _ with & | along X’ . Parallel transport along e1 on both sides allows to
introduce a continuous piecewise C°° vector bundle structure for which traces of
Sk smooth enough elements makes sense.

\ This is used in two steps,
m Parallel transport on X = T*Q provides non symplectic coordinates (g, p) such that
g”(q)pip; = &y (3)Bib; -
m Parallel transport on AT*Q ® ATQ is lifted via 7 .
Lebeau’s spaces W* are preserved for s € [—1, 1] by those changes of gauge.



The curvature problem

Boundary
conditions
for the hy- . . . . - .
:oémepﬂi However one ends with GKFP operator with discontinuous coefficients in the
Lepktm perturbative term
M= M2Jv3pj + Moz

where the M, . are more over symbols of degree 2 (on both sides X_ and X ).

The vertical weight is treated first and one can prove via an integration by part

and conjugation with (p)g,

+1 27Pb \—1/,\— 20 y.
(P (Co+2b°B, 1) (p)g " € LIL(X; F)).

Lebeau’s maximal subelliptic estimate with the exponent 2/3 > 1/2 is now

crucial while using some bootstrap regularity arguments after applying several
CB:;;"‘SZZS resolvents, with

[Mo,jVapsllyyr—1/2 < llslhwr  r—1/2>1/6(r = 2/3),
combined with the one dimensional multiplication rule for Sobolev spaces

€ W22(R) = (1g, (q')p € W2 702(R)))  r —1/2 > 1/6 > 0.



The curvature problem

Boundary
conditions
for the hy- . L . - .
el However one ends with GKFP operator with discontinuous coefficients in the

Lepktm perturbative term
M= ,‘\/lgtjv(')pj + Mao
where the Mo . are more over symbols of degree 2 (on both sides X_ and Y,) .
The vertical weight is treated first and one can prove via an integration by part

and conjugation with (p)g,

(PYIHH(Cy + 267BL%) M)y " € LILA(X: F)).

Lebeau’s maximal subelliptic estimate with the exponent 2/3 > 1/2 is now
crucial while using some bootstrap regularity arguments after applying several

Boundary resolvents, with
conditions

! [Mo,jVapsllyyr—1/2 < lIslhwr  r—1/2>1/6(r > 2/3),
combined with the one dimensional multiplication rule for Sobolev spaces

o€ W22(R) = (1g, (q')p € W2 7O2(R)))  r —1/2 > 1/6 > 0.



The curvature problem

Boundary
conditions
for the hy- . L . - .
el However one ends with GKFP operator with discontinuous coefficients in the

Laplacian perturbative term
M= .‘\/lz,jvé)pj + Mz

where the Mo . are more over symbols of degree 2 (on both sides X_ and Y,) .
The vertical weight is treated first and one can prove via an integration by part

and conjugation with (p)g,

(Yo (Cp+2b7Bh) " Hphg " € L(LA(X; F)).

Lebeau’s maximal subelliptic estimate with the exponent 2/3 > 1/2 is now
crucial while using some bootstrap regularity arguments after applying several

Boundary resolvents, with
conditions

: 1Mo Vapsllyyrrsz < lislwr = 1/2> 1/6(r > 2/3),
combined with the one dimensional multiplication rule for Sobolev spaces

o€ WY2R) = (1, (¢1)p € W2 O04(R)))  r —1/2>1/6 > 0.



Pb

Boundary conditions for dgj and d,

Boundary
conditions
for the hy-
poelliptic
Laplacian

REF: Joint work with S. Shen (21)

When s € Lfoc and ds € L,ZOC, s admits partial (tangential) traces along any

hypersurface.

The boundary condition that we take for the differential are
s1(0,q',p1, p') = F(-1)" s 0,0, —p1,p) 1V
and for Bismut's codifferential
st970,q' o1 ') = F(=1) x ()N 0 ¢y, p')

bp

Those boundary conditions lead to closed realization of gg‘h; and Hgth;

Commutatid

(adjoint to each other for ¢® or t¢? duality products).

Unusual thing: The boundary conditions on Eg-,h-? depend on the metric g79 .
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Boundary conditions for dg 5, and d,!

Boundary
conditions
for the hy-
poelliptic
Laplacian

REF: Joint work with S. Shen (21)

When s € L/OC and ds € L?
hypersurface.

e+ S admits partial (tangential) traces along any

The boundary condition that we take for the differential are

s1(0,d',p1, p') = F(-1)" M) (0,q', —p1,p') 11
and for Bismut's codifferential

sI{l}uJ (0,4, p1,p') = F(~1) x (_1)|{1}mllsl{1}uJ 0,4, —p1,p).

Those boundary conditions Iead to closed realization of dgj, F and dg b,

Commutatid

(adjoint to each other for ¢® or t¢? duality products).

Unusual thing: The boundary conditions on Eg:[,:; depend on the metric g’@
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Boundary conditions for dgj and d,

Boundary
conditions
for the hy-
poelliptic

Laplacian

REF: Joint work with S. Shen (21)
When s € L2 _and ds € L2 , s admits partial (tangential) traces along any

loc loc !
hypersurface.

The boundary condition that we take for the differential are
s1(0,¢',p1, p') = F(-1)" s 0, —p1,p) 1V

and for Bismut's codifferential

S;I}JJ (0,4',p1,p') = F(—1) x (,1)\{1}'11\5/{1}«JJ ©,q,—p1,p').

Commutatid

Those boundary conditions lead to closed realization of gg,hFF and gj,bh,qi
(adjoint to each other for ¢? or t¢? duality products).

Unusual thing: The boundary conditions on Eg:[,:; depend on the metric g7@ .



Pb

Boundary conditions for dgj and d,

Boundary
conditions
for the hy-
poelliptic
Laplacian

REF: Joint work with S. Shen (21)
When s € L2 _and ds € L2 , s admits partial (tangential) traces along any

loc loc !
hypersurface.

The boundary condition that we take for the differential are
s1(0,¢',p1, p') = F(-1)" s 0, —p1,p) 1V
and for Bismut's codifferential
st90,q' o1 ') = F(=1) x ()N 0, ¢ —py, p')

bp

Those boundary conditions lead to closed realization of gg‘h; and Hgth;

Commutatid

(adjoint to each other for ¢® or t¢? duality products).

Unusual thing: The boundary conditions on ggJJ,:F depend on the metric g7@ .



Boundary
conditions

for the hy-
poelliptic

Laplacian

Commutatid

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)

True: gg,h ogg,b =0, 3¢ dgb =

Not true: Beb = dob dgy + dg ndeh

g,h g,h g,b -

Not true: D(Bg%) C D(dg,5) N D(dg").

g,h
True: D(B3%) NCS(X_; F) C D(dg5) N D(E;_bh).
True: There is a common core D C C§°(X—; F) for d, j, and Bg , such that
VseD, Bg hdg hS = dg [,Bg hS

True: There is a common core D?b for Hg_) and B“b . BUT D? #D
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conditions

for the hy-
poelliptic

Laplacian

Commutatid

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: dgyodgy =0, 3¢ dgb =
pric
Not true: gh_d bhdgh+dgbdgh

Not true: D(Bg"%) C D(dg,5) N D(dg%).

g,h
True: D(B5) NCe(X_; F) C D(dg5) N D(E;_bh).
True: There is a common core D C C§°(X—; F) for dg j, and Bg , such that
VseD, Bg hdg hS = dg [,Bg hS

True: There is a common core D?b for Hg_) and B“b . BUT D?® #D



Boundary
conditions

for the hy-
poelliptic

Laplacian

Commutatid

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: dgyodgy =0, 3¢ dgb =
pric
Not true: gh_d bhdgh+dgbdgh
Not true: D(Bg’h) C D(dg,5) N D(dgf’h).

True: D(By%) NCg°(X—; F) C D(dg5) N D(d55,).

True: There is a common core D C C§°(X—; F) for dg j, and Bg , such that

)

VseD, Bg hdg hS = dg [,Bg hS

True: There is a common core D?%b for Hg_) and B“b . BUT D?® #D



Boundary
conditions

for the hy-
poelliptic

Laplacian

Commutatid

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: dgyodgy =0, 3% Og%b =0.
Not true: BLY = &’ g + dg,nds’ -
Not true: D(Bg’h) C D(dg,5) N D(dg‘h).
True: D(BL4) N C(X—; F) C D(dyg,) N D(d2%).

True: There is a common core D C C§°(X—; F) for dg j, and Bg , such that

)

Vs €D, Bg hdg hS = dg [,Bg hS

True: There is a common core D?b for Hg_) and B“b . BUT D% #£D



Composition: What is true, what is not true ?

Boundary
conditions
for the hy-

poelliptic

Laplacian

Franci REF: Joint work with S. Shen (21)
Univ. True: dg o dgp :Ova;bhogzbb =0.
L T 9.9
Not true: Bg,bh = dg,bhdg,h + dg,bdg,bh :
Not true: D(EZ’L’;]) C D(dg,p) N D(Eg,bh)'
—é -~ o) —¢
True: D(Bgf’h) NCFe(X—iF) C D(dg,p) N D(dg,bh) :
True: There is a common core D C C§°(X_; F) for dg p and E:,bh such that
Vs e D, Eifhﬁg,ns = dg,5Bgps-

Commutatid

. A+ —Q = _
True: There is a common core D?b for dg_bh and B;_bh... BUT D% £ D



Composition: What is true, what is not true ?

Boundary
conditions
for the hy-
poelliptic

Laplacian

Franci

i REF: Joint work with S. Shen (21)
Uni. True: gy 0 dgy =0, g odgh =0.
L T 9.9
Not true: Bg,bh = dg,bhdg,h + dg,bdg,bh :
Not true: D(EZ’L’;]) C D(dg,p) N D(Eg,bh)'
—é -~ o) —¢
True: D(BgY) NCG°(X—; F) C D(dg,p) N D(dghy)-

True: There is a common core D C C§°(X_; F) for dg p and E:,bh such that

—dy — R
Vs €D, Bghdgys=dgyBgps.

Commutatid

True: There is a common core D? for Eﬁf’h and E:"h... BUT D% £ D



Commutation with the resolvent

Boundary
conditions
for the hy-

poelliptic

Laplacian

Fens REF: Joint work with S. Shen (21),
58 Amrein-Boutet de Monvel-Georgescu (C%-group and commutator techniques)

=%b
Forany t >0, e Byl sends L2(X; F) to D(dp, )N D(dg b, ) and

n _ _+B% — — —¢B%
Vs € D(dgp,x), e "Fdgpzs=dgpze  "Ts

—on
VseD(dg,W) e~ h¥d¢hq:s,d¢hq:e By s

Consequence: For any z ¢ Spec(Eth) ,

Vs € D(dgp5) (2— Byh) dgys = dg (2= Byh) s
—%b —15%b —
Vs € D(dg) ) (Z_Bg,b) ldg,hszdg,h(z_Bg,bb) 's

Commutatid
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