Boundary conditions for the hypoelliptic Laplacian

Francis Nier,
LAGA, Univ. Paris 13 Joint work with S. Shen

Reims, nov. 19th 2021

Outline

- The hypoelliptic Laplacian (Bismut)
- Maximal subelliptic estimates (Lebeau)
- Dirichlet and Neumann boundary conditions (N.)
- Boundary conditions for d and commutation with d (Shen, N.)

Bismut's presentation

When (M, g) is a riemannian manifold we may consider the duality between $L^{2}\left(M ; \wedge T^{*} M\right)$ and $L^{2}(M ; \wedge T M)$ via

$$
\langle t, s\rangle_{T M, T^{*} M}=\int_{M} \overline{t(x)} \cdot s(x) d v_{g}(x) .
$$

This gives rise to the formal adjoint \tilde{d} of d via

$$
\langle\tilde{d} t, s\rangle_{T M, T^{*} M}=\langle t, d s\rangle_{T^{M}, T^{*} M} .
$$

If $\phi: T M \rightarrow T^{*} M$ is a (fiberwise) M-isomorphism, extended to $\phi: \Lambda T M \rightarrow \Lambda T^{*} M$ we may define

$$
\begin{aligned}
\eta_{\phi}(U, V) & =\bar{U} \cdot(\phi V) \quad, \quad \eta_{\phi}^{*}(\omega, \theta)=\overline{\phi^{-1} \omega} \cdot \theta \\
\text { and } \quad\left\langle s, s^{\prime}\right\rangle_{\phi} & =\int_{M} \eta_{\phi}^{*}\left(s(x), s^{\prime}(x)\right) d v_{g}(x)
\end{aligned}
$$

This leads to d^{ϕ} the formal adjoint of d.
The Hodge codifferential d^{*} is a particular case when $\phi=g: T M \rightarrow T^{*} M$.
This leads to a generalization of Hodge Laplacian

$$
\left(d d^{\phi}+d^{\phi} d\right)=\left(d+d^{\phi}\right)^{2} .
$$

Bismut's presentation

When (M, g) is a riemannian manifold we may consider the duality between $L^{2}\left(M ; \wedge T^{*} M\right)$ and $L^{2}(M ; \wedge T M)$ via

$$
\langle t, s\rangle_{T M, T * M}=\int_{M} \overline{t(x)} \cdot s(x) d v_{g}(x)
$$

This gives rise to the formal adjoint \tilde{d} of d via

$$
\langle\tilde{d} t, s\rangle_{T M, T * M}=\langle t, d s\rangle_{T^{M}, T^{*} M} .
$$

If $\phi: T M \rightarrow T^{*} M$ is a (fiberwise) M-isomorphism, extended to $\phi: \Lambda T M \rightarrow \Lambda T^{*} M$ we may define

$$
\begin{aligned}
& \eta_{\phi}(U, V)=\bar{U} \cdot(\phi V) \quad, \quad \eta_{\phi}^{*}(\omega, \theta)=\overline{\phi^{-1} \omega} \cdot \theta \\
& \left\langle s, s^{\prime}\right\rangle_{\phi}=\int_{M} \eta_{\phi}^{*}\left(s(x), s^{\prime}(x)\right) d v_{g}(x)
\end{aligned}
$$

This leads to d^{ϕ} the formal adjoint of d.
The Hodge codifferential d^{*} is a particular case when $\phi=g: T M \rightarrow T^{*} M$.
This leads to a generalization of Hodge Laplacian

$$
\left(d d^{\phi}+d^{\phi} d\right)=\left(d+d^{\phi}\right)^{2} .
$$

Bismut's presentation

Boundary conditions for the hypoelliptic Laplacian

Francis
Nier,
LAGA,
Univ.
Paris 13 Joint work with S. Shen

The hy-

 poelliptic LaplacianSubelliptic estimates
(Q, g) closed compact riemannian manifold, $\nabla^{Q, g}$ the Levi-Civita connection.
$X=T^{*} Q$
$T\left(T^{*} Q\right)=\underbrace{T\left(T^{*} Q\right)^{H}}_{T Q} \oplus \underbrace{T\left(T^{*} Q\right)^{V}}_{T^{*} Q}, \quad T^{*}\left(T^{*} Q\right)=\underbrace{T^{*}\left(T^{*} Q\right)^{H}}_{\sim T^{*} Q} \oplus \underbrace{T^{*}\left(T^{*} Q\right)^{V}}_{\sim T Q}$.
$X=T^{*} Q$ is a symplectic ($\sigma: T X \rightarrow T^{*} X$) and riemannian manifold $\left(g^{T X}=g \oplus^{\perp} g^{-1}\right)$.

$$
\begin{aligned}
& \phi_{b}=\left(\begin{array}{cc}
g & -b \mathrm{Id} \\
b \mathrm{Id} & 0
\end{array}\right) \quad, \quad \phi_{b}^{-1}=\left(\begin{array}{cc}
0 & b^{-1} \mathrm{Id} \\
-b^{-1} \mathrm{Id} & b^{-2} g
\end{array}\right) \quad b \in \mathbb{R}^{*} \\
& \eta_{\phi_{b}}(U, V)=g\left(\pi x(U), \pi_{X}(V)\right)+b \sigma(U, V), \\
& d v_{g} T x=d v_{\sigma} \stackrel{\text { loc }}{=}|d q d p| \quad x=(q, p) \in X=T^{*} Q \\
& \mathfrak{h}(q, p)=\frac{1}{2} g^{i j}(q) p_{i} p_{j} \quad, \quad\langle p\rangle_{q}=\sqrt{1+2 \mathfrak{h}} .
\end{aligned}
$$

Bismut's Laplacian equals

$$
\begin{aligned}
& B_{\mathfrak{h}}^{\phi_{b}}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{b}}+d_{\mathfrak{h}}\right)^{2}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}} d_{\mathfrak{h}}+d_{\mathfrak{h}} d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}\right) \\
& d_{\mathfrak{h}}=e^{-\mathfrak{h}} d e^{\mathfrak{h}}, \quad d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}=e^{\mathfrak{h}} d^{\phi_{b}} e^{-\mathfrak{h}} .
\end{aligned}
$$

Bismut's presentation

Boundary conditions for the hypoelliptic Laplacian

Francis
Nier,
LAGA,
Univ.
Paris 13 Joint work with S. Shen

The hypoelliptic Laplacian

Subelliptic estimates
(Q, g) closed compact riemannian manifold, $\nabla^{Q, g}$ the Levi-Civita connection. $X=T^{*} Q$

$$
T\left(T^{*} Q\right)=\underbrace{T\left(T^{*} Q\right)^{H}}_{T Q} \oplus \underbrace{T\left(T^{*} Q\right)^{V}}_{T^{*} Q}, \quad T^{*}\left(T^{*} Q\right)=\underbrace{T^{*}\left(T^{*} Q\right)^{H}}_{\sim T^{*} Q} \oplus \underbrace{T^{*}\left(T^{*} Q\right)^{V}}_{\sim T Q} .
$$

$X=T^{*} Q$ is a symplectic ($\sigma: T X \rightarrow T^{*} X$) and riemannian manifold $\left(g^{T X}=g \oplus^{\perp} g^{-1}\right)$.

$$
\begin{aligned}
& \phi_{b}=\left(\begin{array}{cc}
g & -b \mathrm{Id} \\
b \mathrm{Id} & 0
\end{array}\right) \quad, \quad \phi_{b}^{-1}=\left(\begin{array}{cc}
0 & b^{-1} \mathrm{Id} \\
-b^{-1} \mathrm{Id} & b^{-2} g
\end{array}\right) \quad b \in \mathbb{R}^{*} \\
& \eta_{\phi_{b}}(U, V)=g\left(\pi_{X}(U), \pi_{X}(V)\right)+b \sigma(U, V), \\
& d v_{g} T x=d v_{\sigma} \stackrel{\text { loc }}{=}|d q d p| \quad x=(q, p) \in X=T^{*} Q \\
& \mathfrak{h}(q, p)=\frac{1}{2} g^{i j}(q) p_{i} p_{j} \quad, \quad\langle p\rangle_{q}=\sqrt{1+2 \mathfrak{h}} .
\end{aligned}
$$

Bismut's Laplacian equals

$$
\begin{aligned}
& B_{\mathfrak{h}}^{\phi_{b}}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{b}}+d_{\mathfrak{h}}\right)^{2}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}} d_{\mathfrak{h}}+d_{\mathfrak{h}} d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}\right) \\
& d_{\mathfrak{h}}=e^{-\mathfrak{h}} d e^{\mathfrak{h}}, \quad d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}=e^{\mathfrak{h}} d^{\phi_{b}} e^{-\mathfrak{h}} .
\end{aligned}
$$

Bismut's presentation

Boundary conditions for the hypoelliptic Laplacian

Francis
Nier,
LAGA,
Univ.
Paris 13

Joint work

with
S. Shen

The hypoelliptic Laplacian

Subelliptic estimates
(Q, g) closed compact riemannian manifold, $\nabla^{Q, g}$ the Levi-Civita connection. $X=T^{*} Q$

$$
T\left(T^{*} Q\right)=\underbrace{T\left(T^{*} Q\right)^{H}}_{T Q} \oplus \underbrace{T\left(T^{*} Q\right)^{V}}_{T^{*} Q}, \quad T^{*}\left(T^{*} Q\right)=\underbrace{T^{*}\left(T^{*} Q\right)^{H}}_{\sim T^{*} Q} \oplus \underbrace{T^{*}\left(T^{*} Q\right)^{V}}_{\sim T Q} .
$$

$X=T^{*} Q$ is a symplectic $\left(\sigma: T X \rightarrow T^{*} X\right)$ and riemannian manifold $\left(g^{T X}=g \oplus^{\perp} g^{-1}\right)$.

$$
\begin{aligned}
& \phi_{b}=\left(\begin{array}{cc}
g & -b \mathrm{Id} \\
b \mathrm{Id} & 0
\end{array}\right) \quad, \quad \phi_{b}^{-1}=\left(\begin{array}{cc}
0 & b^{-1} \mathrm{Id} \\
-b^{-1} \mathrm{Id} & b^{-2} g
\end{array}\right) \quad b \in \mathbb{R}^{*} \\
& \eta_{\phi_{b}}(U, V)=g\left(\pi_{X}(U), \pi_{X}(V)\right)+b \sigma(U, V), \\
& d v_{g} \tau x=d v_{\sigma} \stackrel{\text { ooc }}{=}|d q d p| \quad x=(q, p) \in X=T^{*} Q \\
& \mathfrak{h}(q, p)=\frac{1}{2} g^{i j}(q) p_{i} p_{j} \quad, \quad\langle p\rangle_{q}=\sqrt{1+2 \mathfrak{h}} .
\end{aligned}
$$

Bismut's Laplacian equals

$$
\begin{aligned}
& B_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}+d_{\mathfrak{h}}\right)^{2}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}} d_{\mathfrak{h}}+d_{\mathfrak{h}} d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}\right) \\
& d_{\mathfrak{h}}=e^{-\mathfrak{h}} d e^{\mathfrak{h}}, \quad d_{\mathfrak{h}}^{\phi_{b}}=e^{\mathfrak{h}} d^{\phi_{\mathfrak{b}}} e^{-\mathfrak{h}} .
\end{aligned}
$$

Bismut's presentation

Boundary conditions for the hypoelliptic Laplacian

Francis
Nier,
LAGA,
Univ.
Paris 13 Joint work with S. Shen

The hypoelliptic Laplacian

Subelliptic estimates
(Q, g) closed compact riemannian manifold, $\nabla^{Q, g}$ the Levi-Civita connection. $X=T^{*} Q$

$$
T\left(T^{*} Q\right)=\underbrace{T\left(T^{*} Q\right)^{H}}_{T Q} \oplus \underbrace{T\left(T^{*} Q\right)^{V}}_{T^{*} Q}, \quad T^{*}\left(T^{*} Q\right)=\underbrace{T^{*}\left(T^{*} Q\right)^{H}}_{\sim T^{*} Q} \oplus \underbrace{T^{*}\left(T^{*} Q\right)^{V}}_{\sim T Q} .
$$

$X=T^{*} Q$ is a symplectic $\left(\sigma: T X \rightarrow T^{*} X\right)$ and riemannian manifold $\left(g^{T X}=g \oplus^{\perp} g^{-1}\right)$.

$$
\begin{aligned}
& \phi_{b}=\left(\begin{array}{cc}
g & -b \mathrm{Id} \\
b \mathrm{Id} & 0
\end{array}\right) \quad, \quad \phi_{b}^{-1}=\left(\begin{array}{cc}
0 & b^{-1} \mathrm{Id} \\
-b^{-1} \mathrm{Id} & b^{-2} g
\end{array}\right) \quad b \in \mathbb{R}^{*} \\
& \eta_{\phi_{b}}(U, V)=g\left(\pi_{X}(U), \pi_{X}(V)\right)+b \sigma(U, V), \\
& d v_{g} T x=d v_{\sigma} \stackrel{\text { loc }}{=}|d q d p| \quad x=(q, p) \in X=T^{*} Q \\
& \mathfrak{h}(q, p)=\frac{1}{2} g^{i j}(q) p_{i} p_{j} \quad, \quad\langle p\rangle_{q}=\sqrt{1+2 \mathfrak{h}} .
\end{aligned}
$$

Bismut's Laplacian equals

$$
\begin{aligned}
& B_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}+d_{\mathfrak{h}}\right)^{2}=\frac{1}{4}\left(d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}} d_{\mathfrak{h}}+d_{\mathfrak{h}} d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}\right) \\
& d_{\mathfrak{h}}=e^{-\mathfrak{h}} d e^{\mathfrak{h}}, \quad d_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}=e^{\mathfrak{h}} d^{\phi_{\mathfrak{b}}} e^{-\mathfrak{h}} .
\end{aligned}
$$

Weitzenbock type formula

REF: Bismut J AMS (2005)
The differential, Bismut's codifferential and Bismut's hypoelliptic Laplacian can be defined for sections of $F=\Lambda T^{*} X \otimes \pi_{X}^{*} \mathfrak{f}, \pi_{X}: X=T^{*} Q \rightarrow Q$.

- ($\left.\mathfrak{f}, \nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)$ hermitian bundle with a flat connection.

■ (eg. $\mathfrak{f}=\mathbb{C}, \nabla^{\mathfrak{f}}=0$ in $\left.\mathcal{C}^{\infty}\left(T^{*} Q ; L(\mathfrak{f})\right), g^{\mathfrak{f}}(z)=e^{2 V(q)}|z|^{2}\right)$.

- Unitary connection $\nabla^{\mathfrak{f}, u}=\nabla^{\mathfrak{f}}+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)$.
- $\nabla^{Q, \mathfrak{f}}$ connection on $\Lambda T Q \otimes \Lambda T^{*} Q \otimes \mathfrak{f}$ made of Levi-Civita and $\nabla^{\mathfrak{f}}$.
- $\nabla=\pi_{X}^{*}\left(\nabla^{Q, \mathfrak{f}}\right)$
$\left(\underline{e}_{i}\right)_{i=1 \ldots, d}$ local basis of $T Q,\left(\underline{e}^{j}\right)_{j=1 \ldots, d}$ basis of $T^{*} Q$,

$$
\begin{aligned}
& e_{i}=\pi^{*}\left(\underline{e}_{i}\right) \in T X^{H} \quad, \quad \hat{e}^{j}=\pi *\left(\underline{e}^{j}\right) \in T X^{V} \\
& \text { dual basis } \quad e^{i} \in T^{*} X^{H} \sim T^{*} Q \quad, \quad \hat{e}_{j} \in T^{*} X^{V} \sim T Q, \\
& \begin{array}{r}
B_{\mathfrak{h}}^{\phi_{b}}=\frac{1}{4 b^{2}}\left[-\Delta^{V}+|p|_{q}^{2}-\frac{1}{2}\left\langle R^{T Q}\left(e_{i}, e_{j}\right) e_{k}, e_{\ell}\right\rangle e^{i} e^{j} i_{\hat{e}^{k} \hat{e}^{\ell}}+N^{V}-N^{H}\right] \\
\\
\quad-\frac{1}{2 b}\left[\mathcal{L}_{Y \mathfrak{h}}+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(Y^{\mathfrak{h}}\right)+\frac{1}{2} e^{i} i_{\hat{e}^{j}} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(e_{j}\right)\right. \\
\\
\left.\quad+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(e_{i}\right) \nabla_{\hat{e}^{i}}\right]
\end{array}
\end{aligned}
$$

Weitzenbock type formula

REF: Bismut J AMS (2005)

The differential, Bismut's codifferential and Bismut's hypoelliptic Laplacian can be defined for sections of $F=\Lambda T^{*} X \otimes \pi_{X}^{*} f, \pi_{X}: X=T^{*} Q \rightarrow Q$.

- (f, $\left.\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)$ hermitian bundle with a flat connection.

■ (eg. $\mathfrak{f}=\mathbb{C}, \nabla^{\mathfrak{f}}=0$ in $\left.\mathcal{C}^{\infty}\left(T^{*} Q ; L(\mathfrak{f})\right), g^{\mathfrak{f}}(z)=e^{2 V(q)}|z|^{2}\right)$.

- Unitary connection $\nabla^{\mathfrak{f}, u}=\nabla^{\mathfrak{f}}+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)$.
- $\nabla^{Q, \mathfrak{f}}$ connection on $\Lambda T Q \otimes \Lambda T^{*} Q \otimes \mathfrak{f}$ made of Levi-Civita and ∇^{f}.
- $\nabla=\pi_{X}^{*}\left(\nabla^{Q, f}\right)$
$\left(\underline{e}_{i}\right)_{i=1 \ldots, d}$ local basis of $T Q,\left(\underline{e}^{j}\right)_{j=1 \ldots, d}$ basis of $T^{*} Q$,

$$
\begin{aligned}
& e_{i}=\pi^{*}\left(\underline{e}_{i}\right) \in T X^{H} \quad, \quad \hat{e}^{j}=\pi *\left(\underline{e}^{j}\right) \in T X^{V} \\
& \text { dual basis } \quad e^{i} \in T^{*} X^{H} \sim T^{*} Q \quad, \quad \hat{e}_{j} \in T^{*} X^{V} \sim T Q, \\
& \begin{aligned}
& B_{\mathfrak{h}}^{\phi_{b}}=\frac{1}{4 b^{2}}\left[-\Delta^{V}+|p|_{q}^{2}-\frac{1}{2}\left\langle R^{T Q}\left(e_{i}, e_{j}\right) e_{k}, e_{\ell}\right\rangle e^{i} e^{j} i_{\hat{e}^{k} \hat{e} \ell}+N^{V}-N^{H}\right] \\
&-\frac{1}{2 b}\left[\mathcal{L}_{Y \mathfrak{h}}+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(Y^{\mathfrak{h}}\right)+\frac{1}{2} e^{i} i_{\mathrm{i}_{j}} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(e_{j}\right)\right. \\
&\left.+\frac{1}{2} \omega\left(\nabla^{\mathfrak{f}}, g^{\mathfrak{f}}\right)\left(e_{i}\right) \nabla_{\hat{e}^{i}}\right]
\end{aligned}
\end{aligned}
$$

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007) Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g} T X=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$.

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{\nu}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g} T x=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$.

$$
e_{i}=\underbrace{\frac{\partial}{\partial q^{i}}}_{\text {order 1 }}+\Gamma_{i j}^{k}(q) \underbrace{p_{k}}_{\text {order } \frac{1}{2}} \underbrace{\frac{\partial}{\partial p_{j}}}_{\text {order } \frac{1}{2}} \quad, \quad \hat{e}_{j}=\underbrace{\frac{\partial}{\partial p_{j}}}_{\text {order } \frac{1}{2}}, \underbrace{\langle p\rangle \frac{\partial}{\partial p_{j}}}_{\text {order } 1}
$$

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007) Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g} T X=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$.

$$
e_{i}=\underbrace{\frac{\partial}{\partial q^{i}}}_{\text {order 1 }}+\Gamma_{i j}^{k}(q) \underbrace{p_{k}}_{\text {order } \frac{1}{2}} \underbrace{\frac{\partial}{\partial p_{j}}}_{\text {order } \frac{1}{2}}, \quad \hat{e}_{j}=\underbrace{\frac{\partial}{\partial p_{j}}}_{\text {order } \frac{1}{2}}, \underbrace{\langle p\rangle \frac{\partial}{\partial p_{j}}}_{\text {order } 1}
$$

Sobolev spaces: $\mathcal{W}^{r}(X ; F)$:

$$
\begin{gathered}
\cap_{r} \mathcal{W}^{r}(X ; F)=S(X ; F) \quad, \quad \cup_{r} \mathcal{W}^{r}(X ; F)=S^{\prime}(X ; F) . \\
\left(u \in \mathcal{W}^{n}(X ; F)\right) \Leftrightarrow\left(\langle p\rangle_{q}^{2 n_{1}}\left(\partial_{q}\right)^{\alpha}\left(\langle p\rangle \partial_{p}\right)^{\beta} u \in L^{2}(X ; F),|\alpha|+|\beta|+n_{1} \leq n\right) .
\end{gathered}
$$

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g} T X=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$. Symbols: $M(q, p)$ symbol of order m iff

$$
\left\|\partial_{q}^{\alpha} \partial_{p}^{\beta} M(q, p)\right\|_{L(F)} \leq C_{\alpha, \beta}\langle p\rangle_{q}^{m-|\beta|}
$$

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g} \tau X=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$.
Geometric Kramers-Fokker-Planck operator:

$$
\begin{aligned}
& -b \nabla_{Y_{\mathfrak{h}}}+\mathcal{O}+\mathcal{M} \\
& Y_{\mathfrak{h}}=g^{i j}(q) p_{j} e_{i}=g^{i j}(q) p_{i}\left(\frac{\partial}{\partial q^{i}}+\Gamma_{i \ell}^{k}(q) p_{k} \frac{\partial}{\partial p_{k}}\right), \\
& \mathcal{O}=\frac{-\Delta_{V}+|p|_{q}^{2}}{2}=\frac{-g_{i j}(q) \partial_{p_{i} p_{j}}^{2}+g^{i j}(q) p_{i} p_{j}}{2} \\
& \mathcal{M}=\mathcal{M}_{0, j} \nabla_{\frac{\partial}{\partial p_{j}}}+\mathcal{M}_{0, i} p_{i}+\mathcal{M}_{0,0}, \quad \mathcal{M}_{0, *} \text { symbols of order } 0 .
\end{aligned}
$$

Lebeau's presentation

REF: Port. Math. (2005) Ann. Inst. Fourier (2007)
Weighted L^{2}-space: Take $g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{\wedge T^{*} Q} \otimes g^{\wedge T Q}\right)$

$$
e^{i}=\underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}, \quad \hat{e}_{j}=\underbrace{d p_{j}}_{\alpha\langle p\rangle_{q}^{1 / 2}}-\Gamma_{j i}^{k}(q) p_{k} \underbrace{d q^{i}}_{\alpha\langle p\rangle_{q}^{-1 / 2}}
$$

and $d v_{g}{ }^{T X}=|d q d p|$.
Order of differential operators: $\frac{\partial}{\partial q^{i}}: 1, \frac{\partial}{\partial p_{j}}: \frac{1}{2}, p_{j} \times: \frac{1}{2}$.
Geometric Kramers-Fokker-Planck operator:

$$
\underbrace{-b \nabla_{Y_{\mathfrak{h}}}}_{\text {order } \frac{3}{2}}+\underbrace{\mathcal{O}}_{\text {order } 1}+\underbrace{\mathcal{M}}_{\text {order } \frac{1}{2}}
$$

$$
\begin{aligned}
& Y_{\mathfrak{h}}=g^{i j}(q) p_{j} e_{i}=g^{i j}(q) p_{i}\left(\frac{\partial}{\partial q^{i}}+\Gamma_{i \ell}^{k}(q) p_{k} \frac{\partial}{\partial p_{k}}\right), \\
& \mathcal{O}=\frac{-\Delta_{V}+|p|_{q}^{2}}{2}=\frac{-g_{i j}(q) \partial_{p_{i} p_{j}}^{2}+g^{i j}(q) p_{i} p_{j}}{2}
\end{aligned}
$$

$$
\mathcal{M}=\mathcal{M}_{0, j} \nabla_{\frac{\partial}{\partial p_{j}}}+\mathcal{M}_{0, i} p_{i}+\mathcal{M}_{0,0}, \quad \mathcal{M}_{0, *} \text { symbols of order } 0
$$

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985),
Hörmander (Book IV-Chap 27)
"cuspidal" semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N. (2018)

$$
\begin{aligned}
& \text { By using the metric } g^{\wedge T^{*} X}=\langle p\rangle_{q}^{-N_{H}+N_{V}} \pi_{X}^{*}\left(g^{T^{*} Q} \otimes g^{\wedge T Q}\right) \text {, Bismut's Laplacian } \\
& 2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}\left(b \in \mathbb{R}^{*} \text { fixed }\right) \text { is a GKFP-operator. }
\end{aligned}
$$

The operator $K=C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}$ is cuspidal $e^{-t K}=\frac{1}{2 i \pi} \int_{\Gamma} \frac{e^{-t z}}{(z-K)} d z$ for $t>0$.

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985), Hörmander (Book IV-Chap 27)
"cuspidal" semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N. (2018)

There exists $C_{b}>0$ and for any $r \in \mathbb{R}, C_{r, b}>0$ such that

$$
\|\mathcal{O} s\|_{\mathcal{W}^{r}}+\left\|\nabla_{Y^{\mathfrak{h}}} s\right\|_{\mathcal{W}^{r}}+\|s\|_{\mathcal{W}^{r+2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|_{\mathcal{W}^{r}} \leq C_{r, b}\left\|\left(C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}-i \lambda\right) s\right\|_{\mathcal{W}^{r}} .
$$

The operator $C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}$ is maximal accretive endowed with

$$
D\left(2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}\right)=\left\{s \in L^{2}(X ; F), \quad B_{h}^{\phi_{b}} s \in L^{2}(X ; F)\right\}
$$

The operator $K=C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}$ is cuspidal $e^{-t K}=\frac{1}{2 i \pi} \int_{\Gamma} \frac{e^{-t z}}{(z-K)} d z$ for $t>0$.

Maximal subelliptic estimate

REF: Max. Hypo. Lebeau Ann. Inst. Fourier (2007), Helffer-Nourrigat (1985), Hörmander (Book IV-Chap 27)
"cuspidal" semigroup: Bismut-Lebeau (2008), Hérau-N. (2004), Helffer-N. (2005), N. (2018)

There exists $C_{b}>0$ and for any $r \in \mathbb{R}, C_{r, b}>0$ such that

$$
\|\mathcal{O} s\|_{\mathcal{W}^{r}}+\left\|\nabla_{Y^{\mathfrak{h}}} s\right\|_{\mathcal{W}^{r}}+\|s\|_{\mathcal{W}^{r+2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|_{\mathcal{W}^{r}} \leq C_{r, b}\left\|\left(C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}-i \lambda\right) s\right\|_{\mathcal{W}^{r}} .
$$

The operator $C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}$ is maximal accretive endowed with

$$
D\left(2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}\right)=\left\{s \in L^{2}(X ; F), \quad B_{\mathfrak{h}}^{\phi_{b}} s \in L^{2}(X ; F)\right\} .
$$

The operator $K=C_{b}+2 b^{2} B_{\mathfrak{h}}^{\phi_{b}}$ is cuspidal $e^{-t K}=\frac{1}{2 i \pi} \int_{\Gamma} \frac{e^{-t z}}{(z-K)} d z$ for $t>0$.

Heuristics

Let $\bar{Q}_{-}=Q_{-} \sqcup Q^{\prime}$ be a riemannian (compact) manifold with boundary Q^{\prime}. Let $Q=Q_{-} \sqcup Q^{\prime} \sqcup Q_{+}$be the double of $\overline{Q_{-}}$with the continous piecewise \mathcal{C}^{∞} metric (in $Q_{(-\varepsilon, \varepsilon)} \sim(-\varepsilon, \varepsilon) \times Q^{\prime}$)

$$
g^{T Q}=\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)=\left(d q^{1}\right)^{2}+m_{i^{\prime} j^{\prime}}\left(\left|q^{1}\right|, q^{\prime}\right) d q^{i^{\prime}} d q^{j^{\prime}}, 1 \notin\left\{i^{\prime}, j^{\prime}\right\}
$$

The flat case corresponds to $m=m\left(0, q^{\prime}\right)$ (totally geodesic boundary).
For the elliptic Laplacian on \bar{Q}_{-}, Dirichlet boundary conditions correspond to odd elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$ for the involution $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ and Neumann boundary condition to even elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$.
Note that in the general case $\partial_{q^{1}} m$ is not continuous and the Christoffel symbols $\Gamma_{i j}^{k}$ are discontinuous along $Q^{\prime}=\left\{\underline{q}^{1}=0\right\}$

Heuristics

Let $\bar{Q}_{-}=Q_{-} \sqcup Q^{\prime}$ be a riemannian (compact) manifold with boundary Q^{\prime}. Let $Q=Q_{-} \sqcup Q^{\prime} \sqcup Q_{+}$be the double of $\overline{Q_{-}}$with the continous piecewise \mathcal{C}^{∞} metric (in $Q_{(-\varepsilon, \varepsilon)} \sim(-\varepsilon, \varepsilon) \times Q^{\prime}$)

$$
g^{T Q}=\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)=\left(d q^{1}\right)^{2}+m_{i^{\prime} j^{\prime}}\left(\left|q^{1}\right|, q^{\prime}\right) d q^{i^{\prime}} d q^{j^{\prime}}, 1 \notin\left\{i^{\prime}, j^{\prime}\right\}
$$

The flat case corresponds to $m=m\left(0, q^{\prime}\right)$ (totally geodesic boundary).
For the elliptic Laplacian on \bar{Q}_{-}, Dirichlet boundary conditions correspond to odd elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$ for the involution $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ and Neumann boundary condition to even elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$.
Note that in the general case $\partial_{q^{1}} m$ is not continuous and the Christoffel symbols $\Gamma_{i j}^{k}$ are discontinuous along $Q^{\prime}=\left\{\underline{q}^{1}=0\right\}$

Heuristics

Let $\bar{Q}_{-}=Q_{-} \sqcup Q^{\prime}$ be a riemannian (compact) manifold with boundary Q^{\prime}. Let $Q=Q_{-} \sqcup Q^{\prime} \sqcup Q_{+}$be the double of $\overline{Q_{-}}$with the continous piecewise \mathcal{C}^{∞} metric (in $Q_{(-\varepsilon, \varepsilon)} \sim(-\varepsilon, \varepsilon) \times Q^{\prime}$)

$$
g^{T Q}=\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)=\left(d q^{1}\right)^{2}+m_{i^{\prime} j^{\prime}}\left(\left|q^{1}\right|, q^{\prime}\right) d q^{i^{\prime}} d q^{j^{\prime}}, 1 \notin\left\{i^{\prime}, j^{\prime}\right\}
$$

The flat case corresponds to $m=m\left(0, q^{\prime}\right)$ (totally geodesic boundary).
For the elliptic Laplacian on \bar{Q}_{-}, Dirichlet boundary conditions correspond to odd elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$ for the involution $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ and Neumann boundary condition to even elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$.
Note that in the general case $\partial_{q^{1}} m$ is not continuous and the Christoffel symbols $\Gamma_{i j}^{k}$ are discontinuous along $Q^{\prime}=\left\{\underline{q}^{1}=0\right\}$

Heuristics

Let $\bar{Q}_{-}=Q_{-} \sqcup Q^{\prime}$ be a riemannian (compact) manifold with boundary Q^{\prime}. Let $Q=Q_{-} \sqcup Q^{\prime} \sqcup Q_{+}$be the double of $\overline{Q_{-}}$with the continous piecewise \mathcal{C}^{∞} metric (in $Q_{(-\varepsilon, \varepsilon)} \sim(-\varepsilon, \varepsilon) \times Q^{\prime}$)

$$
g^{T Q}=\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)=\left(d q^{1}\right)^{2}+m_{i^{\prime} j^{\prime}}\left(\left|q^{1}\right|, q^{\prime}\right) d q^{i^{\prime}} d q^{j^{\prime}}, 1 \notin\left\{i^{\prime}, j^{\prime}\right\}
$$

The flat case corresponds to $m=m\left(0, q^{\prime}\right)$ (totally geodesic boundary).
For the elliptic Laplacian on \bar{Q}_{-}, Dirichlet boundary conditions correspond to odd elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$ for the involution $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ and Neumann boundary condition to even elements of $D\left(\Delta_{Q}^{\text {Hodge }}\right)$.
Note that in the general case $\partial_{q^{1}} m$ is not continuous and the Christoffel symbols $\Gamma_{i j}^{k}$ are discontinuous along $Q^{\prime}=\left\{\underline{q}^{1}=0\right\}$

Heuristics

With $X=T^{*} Q$ the natural involution on $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$ leads to

$$
\Sigma:\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)
$$

In the flat case with $e^{i}=d q^{i}, \hat{e}_{1}=d p_{1}, \hat{e}_{j^{\prime}}=d p_{j^{\prime}}-\Gamma_{j^{\prime} i^{\prime}}^{k^{\prime}}\left(0, q^{\prime}\right) p_{k^{\prime}} d q^{i^{\prime}}$,

$$
\Sigma_{*}\left(s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}\right)=(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

Proposal of boundary conditions for $B_{\mathfrak{h}}^{\phi_{b}}$ on $\bar{X}_{-}=\pi_{x}^{-1} \bar{Q}_{-}$, in the general case

$$
s=s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

Dirichlet

$$
\begin{aligned}
& s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap \prime|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
& s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{aligned}
$$

Neumann

Heuristics

With $X=T^{*} Q$ the natural involution on $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$ leads to

$$
\Sigma:\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)
$$

In the flat case with $e^{i}=d q^{i}, \hat{e}_{1}=d p_{1}, \hat{e}_{j^{\prime}}=d p_{j^{\prime}}-\Gamma_{j^{\prime} i^{\prime}}^{k^{\prime}}\left(0, q^{\prime}\right) p_{k^{\prime}} d q^{i^{\prime}}$,

$$
\Sigma_{*}\left(s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}\right)=(-1)^{|\{1\} \cap l|+|\{1\} \cap J|} s_{l}^{J}\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J} .
$$

Proposal of boundary conditions for $B_{\mathfrak{h}}^{\phi_{b}}$ on $\bar{X}_{-}=\pi_{X}^{-1} \bar{Q}_{-}$, in the general case

$$
s=s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

Dirichlet

$$
\begin{aligned}
& s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap \prime|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
& s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{aligned}
$$

With $X=T^{*} Q$ the natural involution on $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$ leads to

$$
\Sigma:\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)
$$

In the flat case with $e^{i}=d q^{i}, \hat{e}_{1}=d p_{1}, \hat{e}_{j^{\prime}}=d p_{j^{\prime}}-\Gamma_{j^{\prime} i^{\prime}}^{k^{\prime}}\left(0, q^{\prime}\right) p_{k^{\prime}} d q^{i^{\prime}}$,

$$
\Sigma_{*}\left(s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}\right)=(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

Proposal of boundary conditions for $B_{\mathfrak{h}}^{\phi_{b}}$ on $\bar{X}_{-}=\pi_{x}^{-1} \bar{Q}_{-}$, in the general case

$$
s=s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

$$
\begin{aligned}
\text { Dirichlet } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
\text { Neumann } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{aligned}
$$

With $X=T^{*} Q$ the natural involution on $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$ leads to

$$
\Sigma:\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)
$$

In the flat case with $e^{i}=d q^{i}, \hat{e}_{1}=d p_{1}, \hat{e}_{j^{\prime}}=d p_{j^{\prime}}-\Gamma_{j^{\prime} i^{\prime}}^{k^{\prime}}\left(0, q^{\prime}\right) p_{k^{\prime}} d q^{i^{\prime}}$,

$$
\Sigma_{*}\left(s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}\right)=(-1)^{|\{1\} \cap \prime|+|\{1\} \cap J|} s_{l}^{J}\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

Proposal of boundary conditions for $B_{\mathfrak{h}}^{\phi_{b}}$ on $\bar{X}_{-}=\pi_{X}^{-1} \bar{Q}_{-}$, in the general case

$$
s=s_{l}^{J}\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) e^{\prime} \hat{e}_{J}
$$

$$
\begin{aligned}
\text { Dirichlet } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap \prime|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
\text { Neumann } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{aligned}
$$

But remember $\hat{e}_{j}=d p_{j}-\Gamma_{i j}^{k}(q) p_{k} d q^{i}$ are not continuous in the general case.

Subelliptic estimate with a totally geodesic boundary

When $g=\left(d q^{1}\right)^{2}+m\left(0, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$, one defines a closed operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-} ; F\right)$ by the condition

$$
\begin{aligned}
& \left(s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}\right)\right) \Leftrightarrow\left(s_{e v} \in D\left(B_{\mathfrak{h}}^{\phi_{b}}\right)\right) \\
& s_{e v}=s 1_{X_{-}}(x) \mp\left(\Sigma_{*} s\right) 1_{X_{+}}(x) .
\end{aligned}
$$

In the flat case Q is a \mathcal{C}^{∞} closed and compact riemannian manifold. $B_{h}^{\phi_{b}}$ is the usual Bismut's Laplacian. Lebeau's maximal subelliptic estimates ensure $D\left(B_{\mathfrak{h}}^{\phi_{b}}\right) \subset \mathcal{W}^{2 / 3}(X)$.
With $2 / 3>1 / 2$, any $s \in D\left(B_{h}^{\phi_{b}}\right)$ (in particular $s_{e v}$) has a trace along $X^{\prime}=\pi_{X}^{-1}\left(Q^{\prime}\right)$.
Additionally for all $s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi b}\right)$,
$\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b} \mid\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s \|$.
where the measure on X^{\prime} is $\left|p_{1}\right|\left|d q^{\prime} d p\right|$.

Subelliptic estimate with a totally geodesic boundary

When $g=\left(d q^{1}\right)^{2}+m\left(0, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$, one defines a closed operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-} ; F\right)$ by the condition

$$
\begin{aligned}
& \left(s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}\right)\right) \Leftrightarrow\left(s_{e v} \in D\left(B_{h}^{\phi_{b}}\right)\right) \\
& s_{e v}=s 1_{X_{-}}(x) \mp\left(\Sigma_{*} s\right) 1_{X_{+}}(x) .
\end{aligned}
$$

In the flat case Q is a \mathcal{C}^{∞} closed and compact riemannian manifold.
$B_{\mathfrak{h}}^{\phi_{\mathfrak{b}}}$ is the usual Bismut's Laplacian. Lebeau's maximal subelliptic estimates ensure $D\left(B_{\mathfrak{h}}^{\phi_{b}}\right) \subset \mathcal{W}^{2 / 3}(X)$.
With $2 / 3>1 / 2$, any $s \in D\left(B_{h}^{\phi_{b}}\right)$ (in particular $s_{e v}$) has a trace along $X^{\prime}=\pi_{X}^{-1}\left(Q^{\prime}\right)$.
Additionally for all $s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}\right)$,
$\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b} \mid\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s \|$.
where the measure on X^{\prime} is $\left|p_{1}\right|\left|d q^{\prime} d p\right|$.

Subelliptic estimate with a totally geodesic boundary

When $g=\left(d q^{1}\right)^{2}+m\left(0, q^{\prime}\right)$ in $Q_{(-\varepsilon, \varepsilon)}$, one defines a closed operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-} ; F\right)$ by the condition

$$
\begin{aligned}
& \left(s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}\right)\right) \Leftrightarrow\left(s_{e v} \in D\left(B_{h}^{\phi_{b}}\right)\right) \\
& s_{e v}=s 1_{X_{-}}(x) \mp\left(\Sigma_{*} s\right) 1_{X_{+}}(x) .
\end{aligned}
$$

In the flat case Q is a \mathcal{C}^{∞} closed and compact riemannian manifold.
$B_{\mathfrak{h}}^{\phi_{b}}$ is the usual Bismut's Laplacian. Lebeau's maximal subelliptic estimates
ensure $D\left(B_{\mathfrak{h}}^{\phi_{b}}\right) \subset \mathcal{W}^{2 / 3}(X)$.
With $2 / 3>1 / 2$, any $s \in D\left(B_{h}^{\phi_{b}}\right)$ (in particular $s_{e v}$) has a trace along $X^{\prime}=\pi_{X}^{-1}\left(Q^{\prime}\right)$.
Additionally for all $s \in D\left(\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}\right)$,

$$
\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b} \mid\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s \| .
$$

where the measure on X^{\prime} is $\left|p_{1}\right|\left|d q^{\prime} d p\right|$.

Subelliptic estimate general boundary

REF:N. Mem. AMS (2018)
Keep the boundary conditions

$$
\begin{aligned}
\text { Dirichlet } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
\text { Neumann } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{aligned}
$$

for $s=s_{l}^{J} e^{l} \hat{e}_{J}$.
One defines a closed maximal accretive operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-}, F\right)$ with those boundary conditions. Moreover the following estimate holds for all $s \in D\left(\bar{B}_{\phi_{b}, \mp}^{\phi_{b}}\right)$.
To be compared with the flat case (or Lebeau's result for closed compact manifold)
$\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b}\left\|\left(C_{b}+2 b^{2} \bar{B}_{h, \mp}^{\phi_{b}}-i \lambda\right) s\right\|$.

Subelliptic estimate general boundary

REF:N. Mem. AMS (2018)
Keep the boundary conditions

$$
\begin{array}{cl}
\text { Dirichlet } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
\text { Neumann } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{array}
$$

for $s=s_{l}^{J} e^{l} \hat{e}_{J}$.
One defines a closed maximal accretive operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-}, F\right)$ with those boundary conditions. Moreover the following estimate
$\left\|\mathcal{O}^{1 / 2} s\right\|+\|s\|_{\mathcal{W}^{1 / 3}}+\langle\lambda\rangle^{1 / 4}\|s\|+\left\|\left.\langle p\rangle_{q}^{-1} s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b}\left\|\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s\right\|$,
holds for all $s \in D\left(\bar{B}_{\phi_{b}, \mp}^{\phi_{b}}\right)$.
To be compared with the flat case (or Lebeau's result for closed compact manifold)
$\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b}\left\|\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s\right\|$.

Subelliptic estimate general boundary

REF:N. Mem. AMS (2018)

Keep the boundary conditions

$$
\begin{array}{cl}
\text { Dirichlet } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=-(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \\
\text { Neumann } & s_{l}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=+(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} s_{l}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right)
\end{array}
$$

for $s=s_{l}^{J} e^{l} \hat{e}_{J}$.
One defines a closed maximal accretive operator $\bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}$ in $L^{2}\left(X_{-}, F\right)$ with those boundary conditions. Moreover the following estimate
$\left\|\mathcal{O}^{1 / 2} \boldsymbol{s}\right\|+\|\boldsymbol{s}\|_{\mathcal{W}^{1 / 3}}+\langle\lambda\rangle^{1 / 4}\|s\|+\left\|\left.\langle p\rangle_{q}^{-1} s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b}\left\|\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s\right\|$,
holds for all $s \in D\left(\bar{B}_{\phi_{b}, \mp}^{\phi_{b}}\right)$.
To be compared with the flat case (or Lebeau's result for closed compact manifold)
$\|\mathcal{O} s\|+\|\mathcal{Y} s\|+\|s\|_{\mathcal{W}^{2 / 3}}+\langle\lambda\rangle^{1 / 2}\|s\|+\left\|\left.s\right|_{X^{\prime}}\right\|_{L^{2}\left(X^{\prime}\right)} \leq C_{b}\left\|\left(C_{b}+2 b^{2} \bar{B}_{\mathfrak{h}, \mp}^{\phi_{b}}-i \lambda\right) s\right\|$.

The curvature problem

When $\partial_{q^{1}} m\left(0^{-}, q^{\prime}\right) \neq 0$ the Christoffel symbols and actually the second fundamental form are discontinuous for the continuous metric $\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)$.
At first sight the frames

$$
e_{\mp}^{i}=d q^{i} \quad, \quad \hat{e}_{j, \mp}=d p_{j}-\Gamma_{j, i}^{k}\left(0^{\mp}, q^{\prime}\right) p_{k} d q^{i}
$$

are discontinuous.
This is solved by using $\left.g\right|_{\partial Q^{\prime}}=\left.g_{0}\right|_{\partial Q^{\prime}}, g^{T X}=\pi_{x}^{*}\left(g^{T Q} \oplus g^{T^{*} Q}\right)$ and identifying $\hat{e}_{j,-}$ with $\hat{e}_{j,+}$ along X^{\prime}. Parallel transport along e_{1} on both sides allows to introduce a continuous piecewise \mathcal{C}^{∞} vector bundle structure for which traces of smooth enough elements makes sense.
This is used in two steps,

- Parallel transport on $X=T^{*} Q$ provides non symplectic coordinates ($\left.\tilde{q}, \tilde{p}\right)$ such that $g^{i j}(q) p_{i} p_{j}=g_{0}^{i j}(\tilde{q}) \tilde{p}_{i} \tilde{p}_{j}$.
- Parallel transport on $\wedge T^{*} Q \otimes \wedge T Q$ is lifted via π_{X}^{*}.

Lebeau's spaces \mathcal{W}^{s} are preserved for $s \in[-1,1]$ by those changes of gauge.

The curvature problem

When $\partial_{q^{1}} m\left(0^{-}, q^{\prime}\right) \neq 0$ the Christoffel symbols and actually the second fundamental form are discontinuous for the continuous metric $\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)$.

At first sight the frames

$$
e_{\mp}^{i}=d q^{i} \quad, \quad \hat{e}_{j, \mp}=d p_{j}-\Gamma_{j, i}^{k}\left(0^{\mp}, q^{\prime}\right) p_{k} d q^{i}
$$

are discontinuous.

This is solved by using $\left.g\right|_{\partial Q^{\prime}}=\left.g_{0}\right|_{\partial Q^{\prime}}, g^{T X}=\pi_{x}^{*}\left(g^{T Q} \oplus g^{T^{*} Q}\right)$ and identifying $\hat{e}_{j,-}$ with $\hat{e}_{j,+}$ along X^{\prime}. Parallel transport along e_{1} on both sides allows to introduce a continuous piecewise \mathcal{C}^{∞} vector bundle structure for which traces of smooth enough elements makes sense.
This is used in two steps,

- Parallel transport on $X=T^{*} Q$ provides non symplectic coordinates ($\left.\tilde{q}, \tilde{p}\right)$ such that $g^{i j}(q) p_{i} p_{j}=g_{0}^{i j}(\tilde{q}) \tilde{p}_{i} \tilde{p}_{j}$.
- Parallel transport on $\Lambda T^{*} Q \otimes \wedge T Q$ is lifted via π_{X}^{*}.

Lebeau's spaces \mathcal{W}^{s} are preserved for $s \in[-1,1]$ by those changes of gauge.

The curvature problem

When $\partial_{q^{1}} m\left(0^{-}, q^{\prime}\right) \neq 0$ the Christoffel symbols and actually the second fundamental form are discontinuous for the continuous metric $\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)$.
At first sight the frames

$$
e_{\mp}^{i}=d q^{i} \quad, \quad \hat{e}_{j, \mp}=d p_{j}-\Gamma_{j, i}^{k}\left(0^{\mp}, q^{\prime}\right) p_{k} d q^{i}
$$

are discontinuous.
This is solved by using $\left.g\right|_{\partial Q^{\prime}}=\left.g_{0}\right|_{\partial Q^{\prime}}, g^{T X}=\pi_{X}^{*}\left(g^{T Q} \oplus g^{T^{*} Q}\right)$ and identifying $\hat{e}_{j,-}$ with $\hat{e}_{j,+}$ along X^{\prime}. Parallel transport along e_{1} on both sides allows to introduce a continuous piecewise \mathcal{C}^{∞} vector bundle structure for which traces of smooth enough elements makes sense.
This is used in two steps,

- Parallel transport on $X=T^{*} Q$ provides non symplectic coordinates ($\left.\tilde{q}, \tilde{p}\right)$ such that $g^{i j}(q) p_{i} p_{j}=g_{0}^{i j}(\tilde{q}) \tilde{p}_{i} \tilde{p}_{j}$
- Parallel transport on $\wedge T^{*} Q \otimes \wedge T Q$ is lifted via π_{X}^{*}.

Lebeau's spaces \mathcal{W}^{s} are preserved for $s \in[-1,1]$ by those changes of gauge.

The curvature problem

When $\partial_{q^{1}} m\left(0^{-}, q^{\prime}\right) \neq 0$ the Christoffel symbols and actually the second fundamental form are discontinuous for the continuous metric $\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)$.
At first sight the frames

$$
e_{\mp}^{i}=d q^{i} \quad, \quad \hat{e}_{j, \mp}=d p_{j}-\Gamma_{j, i}^{k}\left(0^{\mp}, q^{\prime}\right) p_{k} d q^{i}
$$

are discontinuous.
This is solved by using $\left.g\right|_{\partial Q^{\prime}}=\left.g_{0}\right|_{\partial Q^{\prime}}, g^{T X}=\pi_{x}^{*}\left(g^{T Q} \oplus g^{T^{*} Q}\right)$ and identifying $\hat{e}_{j,-}$ with $\hat{e}_{j,+}$ along X^{\prime}. Parallel transport along e_{1} on both sides allows to introduce a continuous piecewise \mathcal{C}^{∞} vector bundle structure for which traces of smooth enough elements makes sense.
This is used in two steps,

- Parallel transport on $X=T^{*} Q$ provides non symplectic coordinates ($\left.\tilde{q}, \tilde{p}\right)$ such that $g^{i j}(q) p_{i} p_{j}=g_{0}^{i j}(\tilde{q}) \tilde{p}_{i} \tilde{p}_{j}$.
- Parallel transport on $\Lambda T^{*} Q \otimes \Lambda T Q$ is lifted via π_{x}^{*}.

Lebeau's spaces \mathcal{W}^{s} are preserved for $s \in[-1,1]$ by those changes of gauge.

The curvature problem

When $\partial_{q^{1}} m\left(0^{-}, q^{\prime}\right) \neq 0$ the Christoffel symbols and actually the second fundamental form are discontinuous for the continuous metric $\left(d q^{1}\right)^{2}+m\left(\left|q^{1}\right|, q^{\prime}\right)$.
At first sight the frames

$$
e_{\mp}^{i}=d q^{i} \quad, \quad \hat{e}_{j, \mp}=d p_{j}-\Gamma_{j, i}^{k}\left(0^{\mp}, q^{\prime}\right) p_{k} d q^{i}
$$

are discontinuous.
This is solved by using $\left.g\right|_{\partial Q^{\prime}}=\left.g_{0}\right|_{\partial Q^{\prime}}, g^{T X}=\pi_{x}^{*}\left(g^{T Q} \oplus g^{T^{*} Q}\right)$ and identifying $\hat{e}_{j,-}$ with $\hat{e}_{j,+}$ along X^{\prime}. Parallel transport along e_{1} on both sides allows to introduce a continuous piecewise \mathcal{C}^{∞} vector bundle structure for which traces of smooth enough elements makes sense.
This is used in two steps,

- Parallel transport on $X=T^{*} Q$ provides non symplectic coordinates ($\left.\tilde{q}, \tilde{p}\right)$ such that $g^{i j}(q) p_{i} p_{j}=g_{0}^{i j}(\tilde{q}) \tilde{p}_{i} \tilde{p}_{j}$.
- Parallel transport on $\wedge T^{*} Q \otimes \wedge T Q$ is lifted via π_{x}^{*}.

Lebeau's spaces \mathcal{W}^{s} are preserved for $s \in[-1,1]$ by those changes of gauge.

The curvature problem

However one ends with GKFP operator with discontinuous coefficients in the perturbative term

$$
\mathcal{M}=\mathcal{M}_{2, j} \nabla_{\partial_{p_{j}}}+\mathcal{M}_{2,0}
$$

where the $\mathcal{M}_{2, *}$ are more over symbols of degree 2 (on both sides \bar{X}_{-}and \bar{X}_{+}). The vertical weight is treated first and one can prove via an integration by part and conjugation with $\langle p\rangle_{q}^{n}$,

$$
\langle p\rangle_{q}^{n+1}\left(C_{b}+2 b^{2} \bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1}\langle p\rangle_{q}^{-n} \in \mathcal{L}\left(L^{2}(X ; F)\right) .
$$

Lebeau's maximal subelliptic estimate with the exponent $2 / 3>1 / 2$ is now crucial while using some bootstrap regularity arguments after applying several resolvents, with

$$
\left\|\mathcal{M}_{0, j} \nabla_{\partial p_{j}} s\right\|_{\mathcal{W}^{r-1 / 2}} \leq\|s\|_{\mathcal{W} r} \quad r-1 / 2 \geq 1 / 6(r \geq 2 / 3),
$$

combined with the one dimensional multiplication rule for Sobolev spaces

$$
\left.\varphi \in W^{r-1 / 2,2}(\mathbb{R}) \Rightarrow\left(1_{\mathbb{R}_{+}}\left(q^{1}\right) \varphi \in W^{r-1 / 2-0,2}(\mathbb{R})\right)\right), r-1 / 2 \geq 1 / 6>0 .
$$

The curvature problem

However one ends with GKFP operator with discontinuous coefficients in the perturbative term

$$
\mathcal{M}=\mathcal{M}_{2, j} \nabla_{\partial_{p_{j}}}+\mathcal{M}_{2,0}
$$

where the $\mathcal{M}_{2, *}$ are more over symbols of degree 2 (on both sides \bar{X}_{-}and \bar{X}_{+}).
The vertical weight is treated first and one can prove via an integration by part and conjugation with $\langle p\rangle_{q}^{n}$,

$$
\langle p\rangle_{q}^{n+1}\left(C_{b}+2 b^{2} \bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1}\langle p\rangle_{q}^{-n} \in \mathcal{L}\left(L^{2}(X ; F)\right) .
$$

Lebeau's maximal subelliptic estimate with the exponent $2 / 3>1 / 2$ is now crucial while using some bootstrap regularity arguments after applying several resolvents, with

$$
\left\|\mathcal{M}_{0, j} \nabla_{\partial p_{j}} s\right\|_{\mathcal{W}^{r-1 / 2}} \leq\|s\|_{\mathcal{W} r} \quad r-1 / 2 \geq 1 / 6(r \geq 2 / 3),
$$

combined with the one dimensional multiplication rule for Sobolev spaces

$$
\left.\varphi \in W^{r-1 / 2,2}(\mathbb{R}) \Rightarrow\left(1_{\mathbb{R}_{+}}\left(q^{1}\right) \varphi \in W^{r-1 / 2-0,2}(\mathbb{R})\right)\right), r-1 / 2 \geq 1 / 6>0
$$

The curvature problem

However one ends with GKFP operator with discontinuous coefficients in the perturbative term

$$
\mathcal{M}=\mathcal{M}_{2, j} \nabla_{\partial_{p_{j}}}+\mathcal{M}_{2,0}
$$

where the $\mathcal{M}_{2, *}$ are more over symbols of degree 2 (on both sides \bar{X}_{-}and \bar{X}_{+}) The vertical weight is treated first and one can prove via an integration by part and conjugation with $\langle p\rangle_{q}^{n}$,

$$
\langle p\rangle_{q}^{n+1}\left(C_{b}+2 b^{2} \bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1}\langle p\rangle_{q}^{-n} \in \mathcal{L}\left(L^{2}(X ; F)\right) .
$$

Lebeau's maximal subelliptic estimate with the exponent $2 / 3>1 / 2$ is now crucial while using some bootstrap regularity arguments after applying several resolvents, with

$$
\left\|\mathcal{M}_{0, j} \nabla_{\partial p_{j}} s\right\|_{\mathcal{W}^{r-1 / 2}} \leq\|s\|_{\mathcal{W}^{r}} \quad r-1 / 2 \geq 1 / 6(r \geq 2 / 3),
$$

combined with the one dimensional multiplication rule for Sobolev spaces

$$
\left.\varphi \in W^{r-1 / 2,2}(\mathbb{R}) \Rightarrow\left(1_{\mathbb{R}_{+}}\left(q^{1}\right) \varphi \in W^{r-1 / 2-0,2}(\mathbb{R})\right)\right), r-1 / 2 \geq 1 / 6>0
$$

Boundary conditions for $\bar{d}_{g, \mathfrak{h}}$ and $d_{g, \mathfrak{h}}^{\phi_{b}}$

REF: Joint work with S. Shen (21)
When $s \in L_{l o c}^{2}$ and $d s \in L_{l o c}^{2}, s$ admits partial (tangential) traces along any hypersurface.
The boundary condition that we take for the differential are

$$
s_{l^{\prime}}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1)^{|J \cap\{1\}|} s_{\prime^{\prime}}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \quad 1 \notin I^{\prime}
$$

and for Bismut's codifferential

$$
s_{1}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1) \times(-1)^{|\{1\} \cap \||} s_{I}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) .
$$

Those boundary conditions lead to closed realization of $\bar{d}_{g, \mathfrak{h}, \mp}$ and $\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}$ (adjoint to each other for ϕ^{b} or ${ }^{t} \phi^{b}$ duality products).
Unusual thing: The boundary conditions on $\bar{d}_{g, \mathfrak{h}, \mp}$ depend on the metric $g^{T Q}$.

Boundary conditions for $\bar{d}_{g, \mathfrak{h}}$ and $d_{g, \mathfrak{h}}^{\phi_{b}}$

REF: Joint work with S. Shen (21)
When $s \in L_{l o c}^{2}$ and $d s \in L_{l o c}^{2}, s$ admits partial (tangential) traces along any hypersurface.
The boundary condition that we take for the differential are

$$
s_{\prime^{\prime}}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1)^{|J \cap\{1\}|} s_{\prime^{\prime}}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \quad 1 \notin I^{\prime}
$$

and for Bismut's codifferential

$$
s_{l}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1) \times(-1)^{|\{1\} \cap \||} s_{l}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) .
$$

Those boundary conditions lead to closed realization of $\bar{d}_{g, \mathfrak{h}, \mp}$ and $\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}$ (adjoint to each other for ϕ^{b} or ${ }^{t} \phi^{b}$ duality products).
Unusual thing: The boundary conditions on $\bar{d}_{g, \mathfrak{h}, \mp}$ depend on the metric $g^{T Q}$.

Boundary conditions for $\bar{d}_{g, \mathfrak{h}}$ and $d_{g, \mathfrak{h}}^{\phi_{b}}$

REF: Joint work with S. Shen (21)
When $s \in L_{l o c}^{2}$ and $d s \in L_{l o c}^{2}, s$ admits partial (tangential) traces along any hypersurface.
The boundary condition that we take for the differential are

$$
s_{l^{\prime}}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1)^{|J \cap\{1\}|} s_{\prime^{\prime}}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \quad 1 \notin I^{\prime}
$$

and for Bismut's codifferential

$$
s_{I}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1) \times(-1)^{|\{1\} \cap \||} s_{I}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) .
$$

Those boundary conditions lead to closed realization of $\bar{d}_{g, \mathfrak{h}, \mp}$ and $\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}$ (adjoint to each other for ϕ^{b} or ${ }^{t} \phi^{b}$ duality products).
Unusual thing: The boundary conditions on $\bar{d}_{g, \mathfrak{h}, \mp}$ depend on the metric $g^{T Q}$.

Boundary conditions for $\bar{d}_{g, \mathfrak{h}}$ and $d_{g, \mathfrak{h}}^{\phi_{b}}$

REF: Joint work with S. Shen (21)
When $s \in L_{l o c}^{2}$ and $d s \in L_{l o c}^{2}, s$ admits partial (tangential) traces along any hypersurface.
The boundary condition that we take for the differential are

$$
s_{l^{\prime}}^{J}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1)^{|J \cap\{1\}|} s_{\prime^{\prime}}^{J}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) \quad 1 \notin I^{\prime}
$$

and for Bismut's codifferential

$$
s_{1}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime}, p_{1}, p^{\prime}\right)=\mp(-1) \times(-1)^{|\{1\} \cap \||} s_{1}^{\{1\} \cup J^{\prime}}\left(0, q^{\prime},-p_{1}, p^{\prime}\right) .
$$

Those boundary conditions lead to closed realization of $\bar{d}_{g, \mathfrak{h}, \mp}$ and $\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}$ (adjoint to each other for ϕ^{b} or ${ }^{t} \phi^{b}$ duality products).
Unusual thing: The boundary conditions on $\bar{d}_{g, \mathfrak{h}, \mp}$ depend on the metric $g^{T Q}$.

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{\mathfrak{b}}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{l}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{\mathfrak{b}}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Composition: What is true, what is not true ?

REF: Joint work with S. Shen (21)
True: $\bar{d}_{g, \mathfrak{h}} \circ \bar{d}_{g, \mathfrak{h}}=0, \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \circ \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}=0$.
Not true: $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}}+\bar{d}_{g, \mathfrak{h}} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$.
Not true: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: $D\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right) \cap \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right) \subset D\left(\bar{d}_{g, \mathfrak{h}}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\right)$.
True: There is a common core $\mathcal{D} \subset \mathcal{C}_{0}^{\infty}\left(\bar{X}_{-} ; F\right)$ for $\bar{d}_{g, \mathfrak{h}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}$ such that

$$
\forall s \in \mathcal{D}, \quad \bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}} \bar{B}_{g, \mathfrak{h}} s .
$$

True: There is a common core $\mathcal{D}^{\phi_{b}}$ for $\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}$ and $\bar{B}_{g, \mathfrak{h}}^{\phi_{b}} \ldots$ BUT $\mathcal{D}^{\phi_{b}} \neq \mathcal{D}$

Commutation with the resolvent

REF: Joint work with S. Shen (21),
Amrein-Boutet de Monvel-Georgescu (C^{0}-group and commutator techniques)
For any $t>0, e^{-t \bar{B}_{\mathfrak{h}}^{\phi_{b}}, \mp}$ sends $L^{2}(X ; F)$ to $D\left(\bar{d}_{\mathfrak{h}, \mp}\right) \cap D\left(\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}\right)$ and

$$
\begin{aligned}
& \forall s \in D\left(\bar{d}_{g, \mathfrak{h}, \mp}\right), \quad e^{-t \bar{B}_{\mathfrak{h}}^{\phi}, \mp} \bar{d}_{g, \mathfrak{h}, \mp} s=\bar{d}_{g, \mathfrak{h}, \mp} e^{-t \bar{B}_{\mathfrak{h}}^{\phi}, \mp s}
\end{aligned}
$$

Consequence: For any $z \notin \operatorname{Spec}\left(\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)$,

$$
\begin{array}{ll}
\forall s \in D\left(\bar{d}_{g, \mathfrak{h}, \mp}\right) & \left(z-\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1} \bar{d}_{g, \mathfrak{h}} s=\bar{d}_{g, \mathfrak{h}}\left(z-\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1} s, \\
\forall s \in D\left(\bar{d}_{g, \mathfrak{h}, \mp}^{\phi_{b}}\right) & \left(z-\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1} \bar{d}_{g, \mathfrak{h}}^{\phi_{b}} s=\bar{d}_{g, \mathfrak{h}}^{\phi_{b}}\left(z-\bar{B}_{g, \mathfrak{h}}^{\phi_{b}}\right)^{-1} s .
\end{array}
$$

