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Scattering and resonances Semiclassical regime Chaotic trapped set Resonance gap Fractal Weyl’s law

Outline

Quantum / scalar wave on Rd, scattered by obstacles or nonflat metrics
; resonance spectrum.

High frequency (= semiclassical) regime ; relevance of the classical
(ray) dynamics: geodesic flow.
Distribution of resonances at high frequency ; set of trapped geodesics.
Focus on hyperbolic dynamics: assume the trapped orbits are
exponenially unstable ; they form a fractal set, carrying a chaotic flow.

• hyperbolicity ; fast dispersion of the waves; on the other hand, constructive
interferences could keep them localized.
Dynamical conditions for a resonance gap? (=global upper bound on
resonance lifetimes)

• Counting high frequency resonances : fractal Weyl’s law?
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Wave scattering and decay

u(T)

B(0,R)

u(0)

Scalar waves scattered by obstacles O b Rd:

(∂2
t −∆Ω)u = 0, u(0) = u0, ∂t(0) = u1,

∆Ω Dirichlet Laplacian on Ω = Rd \ O (Ω connected, ∂Ω smooth).

Compactly supported initial data u0, u1 ∈ C∞c (Ω): both

– the local energy ER(u(t)) = 1
2

∫
B(0,R)

(|∂tu(t, x)|2 + |∇u(t, x)|2) dx

– the “correlation” 〈f, u(t)〉D,D′ , for a given f ∈ C∞c (Ω),

will decay to zero as t→∞.

Can we better describe this decay? How does it depend on the
obstacles?

• Large time asymptotics ; spectral problem.
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Resolvent and Resonances (odd dimension)
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Central object in spectral theory: the resolvent RΩ(λ) = (−∆Ω − λ2)−1.

• RΩ(λ) can be defined in {Imλ > 0} (“physical sheet”), blows up when
Imλ↘ 0 (cf. continuous spectrum).
Yet, the truncated resolvent χRΩ(λ)χ : L2 → L2 can be meromorphically
continued into {Imλ < 0} (“unphysical sheet”).
; Resonances {λj} = discrete poles of finite multiplicities.

• If the strip {0 ≥ Imλ > −A} contains finitely many resonances, one hopes
to show expansions of the type (with u(0) = 0, ∂tu(0) = u1) as:

〈f, u(t)〉 =
∑

Imλj>−A

e−itλj 〈f, vj〉〈vj , u1〉+ O(e−tA) , t→∞.

vj ∈ C∞(Ω) the resonant state associated with λj , of lifetime | Imλj |−1.
Note that vj 6∈ L2(Ω) (diverges exponentially when |x| → ∞).
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High frequency / semiclassical regime
• Half-wave equation i∂tu =

√
−∆Ωu ≡ semiclassical Schrödinger equation

ih∂tu = Phu, with quantum Hamiltonian Ph = h
√
−∆Ω.

High-λ regime ≡ semiclassical regime h ∼ λ−1 � 1 at energies ∼ 1.

=⇒ Semiclassical analysis: the quantum dynamics is guided by the
classical dynamics on the phase space Ω× R = {ρ = (x, ξ)} generated by
the Hamiltonian p(x, ξ) = |ξ|: the geodesic flow Φt on Ω× R.
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Ex: wavepacket uρ0(x) = a(x−x0√
h

) ei
ξ0·x
h localized near x0; its h-Fourier

transform is localized near ξ0.
≡ uρ0 is microlocalized in the

√
h-nbhd of ρ0 = (x0, ξ0).

=⇒ semiclassical correspondence: u(t) = e−itPh/huρ0 is a wavepacket
microlocalized near ρt = Φt(ρ0).
microscopic shape deformed by dΦt(ρ0): dispersion.
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Distribution of resonances vs. classical trapped set

u(T)

B(0,R)

u(0)

B(0,R)

Classical mechanical problem: understand the long time behaviour of the ray
dynamics on the energy shell p−1(1) = S∗Ω.

Focus on the interaction region B(0, R):

most trajectories spend a finite time in the interaction region before
escaping to |x| → ∞
there may exist trapped trajectories: trapped set
K

def
= {ρ ∈ S∗Ω, Φt(ρ) 6→ ∞ when t→ ±∞}

Compact, flow-invariant subset of S∗Ω.

Main idea: the distribution of resonances near the real axis depends on the
geometric and dynamical properties of K.
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Distribution of resonances vs. trapped set (2)

λ
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Case 0: K empty (ex: convex obstacle).
No resonances in {| Imλ| ≤ C log Reλ}.
[LAX-PHILLIPS,VAINBERG,MORAWETZ,MELROSE,RALSTON,STRAUSS]

−
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λ|Im    |=O(      ) 

Case 1: K contains an elliptic (=stable) periodic orbit.
Low dispersion =⇒ one can construct quasimodes
‖(∆Ω + λ2)vλ‖ = O(λ−∞) microlocalized on K, and identify nearby
resonances with | Imλj | = O(λ−∞)
[RALSTON,LAZUTKIN,POPOV,VODEV,STEFANOV,TANG-ZWORSKI]
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K a single hyperbolic orbit
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Case 2: 2 convex obstacles (on R2). K = single hyperbolic periodic orbit γ.

Hyperbolicity: stable (Es) / unstable Eu directions transverse to the orbit,
tangent to the stable (W s) and unstable (Wu) manifolds.

∀t > 0, ‖dΦt �Esρ ‖ ≤ C e
−νt, ‖dΦ−t �Euρ ‖ ≤ C e

−νt.

Quantitatively: dΦt �Euρ∼ e
tνγ , with νγ > 0 the Lyapunov exponent.
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Visualization of W s/Wu on
the Poincaré dynamics on
∂O1. The stripes correspond
to points bouncing 1→ 2 in
the future or the past.
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K a single hyperbolic orbit (2)
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2 convex obstacles (on R2).
[IKAWA, GÉRARD, GÉRARD-SJÖSTRAND, SJÖSTRAND]
• Hyperbolicity of γ =⇒ fast dispersion (=deformation) of a wavepacket on γ:

|〈uρ, e−itPh/huργ 〉| ≤ C e
−tνγ/2, ∀t > 0
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; high-frequency gap νγ/2 of the resonance spectrum.
A more precise analysis (Quantum Birkhoff normal form) provide asymptotic values for
the resonances near λ� 1: they form a deformed half-lattice.
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Chaotic trapped set
Case 3: N ≥ 3 convex obstacles in Rd (non-eclipse condition)
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Every orbit of K is hyperbolic, splitting Euρ ⊕ Esρ ⊕ V (ρ).
Unstable Jacobian Jut (ρ) = |det(dΦt �Euρ )| ∼ eΛρt

Complexity: K contains infinitely many orbits. K a fractal repeller

Each colored strip:
points escaping the
system at time
0, 1, 2, . . .. After
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set (right).
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Chaos: hyperbolicity + complexity

An initial wavepacket uρ sitting on a trapped point ρ ∈ K will spread along
Wu. Some parts will escape, some will land on other trapped orbits.
Interferences between different wavepackets may slow down the escape
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This competition between hyperbolicity and
complexity can be measured by topological pressures:

P(s)
def
= lim

T→∞

1

T
log

∑
γ:T≤Tγ≤T+1

(Juγ )−s

P(s)

top
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cl−γ

H

The thinner K, the smaller P(s). We will be interested in P(s = 1/2).
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Resonance gap for thin chaotic trapped sets

Theorem ([IKAWA,GASPARD-RICE,BURQ,N-ZWORSKI])
Assume the trapped set K is a hyperbolic repeller with P(1/2) < 0.
Then ∀ε > 0, the strip {0 ≥ Imλ ≥ P(1/2) + ε} contains at most finitely many
resonances. Resonance gap.
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C

j

Proof: show that any high-frequency initial state uλ ∈ C∞c (B(0, R)) decays at
least like C etP(1/2):

1. hyperbolicity =⇒ wavepackets microlocalized on K disperse at the rate
(Jut )−1/2, thus “leak out” of B(0, R) after a time C1 log λ.

2. Sum the contributions of many trajectories. If P(1/2) < 0, dispersion
always beats interferences =⇒ leakage at rate
‖uλ(t)‖L2(B(0,R)) ≤ Ce(t−C1 log λ)P(1/2).
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Dynamical consequences of the resonance gap (d ≥ 3 odd)

u(T)
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Exponential decay of the local energy
[MORAWETZ-RALSTON-STRAUSS,IKAWA,CHRISTIANSON].
∀s > 0, ∃αs, C > 0, for any u0 ∈ Hs(Ω) supported in B(0, R),

ER(u(t)) ≤ Ce−αst ‖u1‖2Hs , ∀t > 0 .

For any f ∈ C∞c (Ω), the correlation function

〈f, u(t)〉 =
∑

Imλj>−A

e−itλj 〈f, vj〉〈vj , u1〉D′,D + Of (e−tA)‖u1‖HN .
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How sharp is the pressure bound?
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Geometric models of scattering : X = Γ\H2 surface of constant negative
curvature and infinite area (→ hyperbolic flow).
Resonances λ2

j = sj(1− sj), with sj zero of the Selberg zeta function.

• P(1/2) < 0←→ δ < 1/2, where δ = dimK−1
2

.
Pressure bound: sj < δ [PATTERSON,SULLIVAN], nontrivial for δ < 1/2.

Improvements on this pressure bound:

[NAUD] uses Dolgopyat’s method to prove partial cancellations when
summing over trajectories =⇒ Re sj ≤ δ−ε1.

[PETKOV-STOYANOV] apply the same method to N -obstacle scattering on
Rd (non-eclipse condition) =⇒ Imλj ≤ P(1/2)−ε1.
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Resonance gap for "thick" chaotic trapped sets
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Fractal Uncertainty Principle [BOURGAIN-DYATLOV].
X, Y ⊂ [0, 1] fractal sets, X(h), Y (h) their h-neighbourhoods.
Then ∃β = β(X,Y ) > 0 s.t., for 0 < h� 1,

‖1lX(h)(x) 1lY (h)(−ih∇x)‖L2→L2 ≤ hβ .

Replacing horizontal / vertical leaves by Wu/W s by , and using the fractal
structure of K, one obtains resonance gaps without conditions on P(1/2):

[DYATLOV-ZAHL,BOURGAIN-DYATLOV,JIN-ZHANG] Resonance gap on Γ\H2

for any value of δ ∈ (0, 1):
∃ε(δ) > 0, Re sj ≤ 1

2
−ε(δ) for Im sj ≥ C.

[VACOSSIN (WIP)] ∃ resonance gap for N -obstacle scattering on R2,
whatever the thickness of the hyperbolic repeller K.
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Counting long-living resonances for a chaotic K

Below the gap, how many resonances are there?
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Theorem ([SJÖSTRAND’90, SJÖSTRAND-ZWORSKI’07, N-SJ-ZW’11])
The number resonances in a high-frequency box is bounded above by:

∀λ ≥ Λ0, # {λ ≤ Reλj ≤ λ+ w, Imλ ≥ −γ} ≤ Cw,γλµ,

where µ = dim(K)−1
2

(box dimension).

Idea: count how many quantum states uλ can be "hosted" on K

1. resonant states are microlocalized in a
√
h-nbhd of K (h ∼ λ−1)

2. Each quantum state occupies a "Planck cell" of volume ∼ hd

3. ; count the number of “Planck cells” in this nbhd.

Conjecture: this upper bound is sharp, at least for γ large enough
[LIN-ZWORSKI’04]: Fractal Weyl’s law.
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Counting long-living resonances for a chaotic K
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What is the optimal resonance gap? Recall γcl = −P(1), the local decay of a
classical density cloud of points.
Quantum decay rate = classical decay rate if Imλj = −γcl/2.
Resonances with Imλj > −γcl/2 are called "supersharp".

Conjecture [JAKOBSON-NAUD] On Γ\H2, there are at most finitely many
"supersharp resonances" (at high frequency, Re sj ≤ δ

2
+ o(1)).

They prove that there are infinitely many resonances with
Re sj ≥ δ(1−2δ)

2
.

[NAUD, DYATLOV]: the counting of "supersharp resonances" is smaller
than the fractal Weyl’s law: ∀α > 0, ∃τ(α) > 0,
#{sj : Re sj ≥ δ/2+α, | Im sj | ≤ λ} = O(λδ+1−τ(α))
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Perspectives

improve the "pressure bound" in higher dimensions? Resonance gap for
thick trapped sets? (the Fractal uncertainy principle works in 2D only)

Lower bounds on the resonance counting are more difficult to obtain (cf.
nonselfadjoint spectral problem). Main trick: trace formulae
[SJÖSTRAND-ZWORSKI, GUILLOPÉ-ZWORSKI, JAKOBSON-NAUD]

Structure of the resonant modes vj(x)? At high frequency, they are
microlocalized along the unstable manifold of K [BONY-MICHEL,KEATING et
al.,N-ZWORSKI]. Can we get local Lp bounds? Difficulty: spectral
projectors are not orthogonal.

adapt to waves on compact domains / compact manifolds with chaotic
flow and nonuniform damping (cf. V.Petkov’s
talk)[SCHENCK,ANANTHARAMAN, RIVIÈRE]

adapt to nonscalar waves?

Merci pour votre attention
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High frequency / semiclassical regime (2)

The analysis can be generalized to
scalar waves scattered by nonflat metrics (g 6= g0 in a bounded region of
Rd), ∆Ω → ∆g

quantum waves scattered by a potential semiclassical Schrödinger equ.

ih∂tu = Phu, Ph = −h2∆+V (x)

x
y
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gh
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The wavepacket u(t) = e−itPh/huρ0 follows the Hamiltonian flow generated
by p(x, ξ) = |ξ|2 + V (x) on T ∗Rd.

The resonances {zj(h)} (poles of χ(Ph − z)−1χ) are associated with
metastable state vj(h) of lifetimes h

| Im zj |
.

; focus on the long living resonances Im zj = O(h).
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