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Outline

@ Quantum / scalar wave on R?, scattered by obstacles or nonflat metrics
~+ resonance spectrum.

@ High frequency (= semiclassical) regime ~ relevance of the classical
(ray) dynamics: geodesic flow.
Distribution of resonances at high frequency ~» set of trapped geodesics.
@ Focus on hyperbolic dynamics: assume the trapped orbits are
exponenially unstable ~» they form a fractal set, carrying a chaotic flow.
o hyperbolicity ~ fast dispersion of the waves; on the other hand, constructive
interferences could keep them localized.
Dynamical conditions for a resonance gap? (=global upper bound on
resonance lifetimes)
e Counting high frequency resonances : fractal Weyl's law?
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Wave scattering and decay
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Scalar waves scattered by obstacles © € R%:

(af —Ao)u=0, u(0)=muo, 9:(0)=ui,
Aq Dirichlet Laplacian on Q = R? \ O (2 connected, 89 smooth).

Compactly supported initial data ug, w1 € C°(Q2): both
— the local energy €r(u(t)) = 5 [j5o p (10eu(t, 2)[* + [Vu(t, 2)|?) do
— the “correlation” ( f, u(t))» o, for a given f € C°(Q),

will decay to zero as t — oc.
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Wave scattering and decay
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Scalar waves scattered by obstacles © € R%:

(af —Ao)u=0, u(0)=muo, 9:(0)=ui,
Aq Dirichlet Laplacian on © = R%\ O (Q connected, 99 smooth).
Compactly supported initial data ug, w1 € C°(Q2): both
— the local energy €r(u(t)) = 5 [j5o p (10eu(t, 2)[* + [Vu(t, 2)|?) do
— the “correlation” ( f, u(t))» o, for a given f € C°(Q),
will decay to zero as t — oo.

Can we better describe this decay? How does it depend on the
obstacles?

e Large time asymptotics ~ spectral problem.



Scattering and resonances
Resolvent and Resonances (odd dimension)

0 Imk>0

Central object in spectral theory: the resolvent Ro(\) = (—Aq — A?)7L.

e Rq() can be defined in {Im X\ > 0} (“physical sheet”), blows up when
Im A\ N\ 0 (cf. continuous spectrum).

Yet, the truncated resolvent xRq()\)x : L? — L? can be meromorphically
continued into {Im A < 0} (“unphysical sheet”).

~» Resonances {)\,} = discrete poles of finite multiplicities.

e If the strip {0 > Im A > — A} contains finitely many resonances, one hopes
to show expansions of the type (with «(0) = 0, 8;u(0) = u;) as:

<f7 u(t)> = Z eiit)\j <f7 Uj)(”j? 'LL1> + O(eitA) , t—o0.

ImA;>—-A

v; € C*(Q) the resonant state associated with );, of lifetime | Tm \;| .
Note that v; ¢ L*(Q2) (diverges exponentially when |z| — o).
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High frequency / semiclassical regime
o Half-wave equation i0;u = v/—Aqu = semiclassical Schrodinger equation
ihdyu = Pypu, with quantum Hamiltonian P, = hv/—Aq.
High-\ regime = semiclassical regime  ~ A\~ < 1 at energies ~ 1.

— Semiclassical analysis: the quantum dynamics is guided by the
classical dynamics on the phase space 2 x R = {p = (z,&)} generated by
the Hamiltonian p(z, £) = |£|: the geodesic flow ®‘ on  x R.

Ex: wavepacket u,, (z) = a(%) ¢“%* localized near Zo; its h-Fourier
transform is localized near &.
= u,, is microlocalized in the v/h-nbhd of po = (z0, &).

— semiclassical correspondence: u(t) = e~ "*"»/"y, is a wavepacket
microlocalized near p; = ®*(po).
microscopic shape deformed by d®*(po): dispersion.



Scattering and resonances Semiclassical regime Chaotic trapped set Resonance gap Fractal Weyl's law

Distribution of resonances vs. classical trapped set
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Classical mechanical problem: understand the long time behaviour of the ray
dynamics on the energy shell p~*(1) = S*Q.

Focus on the interaction region B(0, R):
@ most trajectories spend a finite time in the interaction region before
escaping to |z| — oo
@ there may exist trapped trajectories: trapped set
K ¥ {pe 5, '(p) £ oo when t — oo}
Compact, flow-invariant subset of S*Q2.
Main idea: the distribution of resonances near the real axis depends on the
geometric and dynamical properties of K.



Scattering and resonances Semiclassical regime Chaotic trapped set Resonance gap

Case 0:

Case 1:

Distribution of resonances vs. trapped set (2)

0 A

K empty (ex: convex obstacle).
No resonances in {|Im A| < C'log Re A}.
[LAX-PHILLIPS,VAINBERG,MORAWETZ,MELROSE,RALSTON,STRAUSS]

0 A
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IImA; I=0(™)

K contains an elliptic (=stable) periodic orbit.

Low dispersion = one can construct quasimodes

[l(Aq + A?)uy|| = O(A~>°) microlocalized on K, and identify nearby
resonances with | Im A;| = O(A™%°)
[RALSTON,LAZUTKIN,POPOV,VODEV, STEFANOV, TANG-ZWORSKI]

Fractal Weyl's law
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K a single hyperbolic orbit

Case 2: 2 convex obstacles (on R?). K = single hyperbolic periodic orbit ~.

Hyperbolicity: stable (E*) / unstable E* directions transverse to the orbit,
tangent to the stable (W) and unstable (W*) manifolds.

Yt > 0, do' |gs || < Ce ¥, Ao g || < Ce
4 P

Quantitatively: d®* [gu~ ™7, with v, > 0 the Lyapunov exponent.
u ,

Visualization of W?° /W™ on
the Poincaré dynamics on

' 00,. The stripes correspond
to points bouncing 1 — 2in
the future or the past.

B*ao,

cos @
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K a single hyperbolic orbit (2)

2 convex obstacles (on R?).
[IKAWA, GERARD, GERARD-SJOSTRAND, SJOSTRAND]
e Hyperbolicity of v = fast dispersion (=deformation) of a wavepacket on ~:

‘<U’P7 eiitph/hupﬁ'” S Ceitl/w/27 vt >0

+1-V2

~+ high-frequency gap v, /2 of the resonance spectrum.

A more precise analysis (Quantum Birkhoff normal form) provide asymptotic values for
the resonances near A > 1: they form a deformed half-lattice.
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Chaotic trapped set
Case 3: N > 3 convex obstacles in R? (non-eclipse condition)

@ Every orbit of K is hyperbolic, splitting £, ® EKj e V(p).
Unstable Jacobian J;(p) = | det(d®* )| ~ ™!
@ Complexity: K contains infinitely many orbits. K a fractal repeller

. cos @ oo & &, Iy
P Ping @,’*'4‘ ! ‘?& N é"? ﬁu’ ! ‘f",t
system at time uun%@eé:Q %@4{%{. q:zq&:.{;v.:. 9:‘“ *;
0,1, 2,.. ... After ' o b Wy b % W )
removing those strips, b b db
00 ka

remains the trapped
set (right).
(Plot ©Leon Poon)
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Chaos: hyperbolicity + complexity

An initial wavepacket u,, sitting on a trapped point p € K will spread along
W*. Some parts will escape, some will land on other trapped orbits.
Interferences between different wavepackets may slow down the escape

This competition between hyperbolicity and \P( s)
complexity can be measured by topological pressures: H,

. 1 u\—Ss
P(s) = Jim - log >
v T<T<T+1

The thinner K, the smaller P(s). We will be interested in P(s = 1/2).
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Resonance gap for thin chaotic trapped sets

Theorem ([IkAwA,GASPARD-RICE,BURQ,N-ZWORSKI])
Assume the trapped set K is a hyperbolic repeller with P(1/2) < 0.

Then Ve > 0, the strip {0 > Im X\ > P(1/2) + €} contains at most finitely many
resonances. Resonance gap.

iP(1/2)

Proof: show that any high-frequency initial state uy € Cg°(B(0, R)) decays at
least like C et”(1/%);
1. hyperbolicity = wavepackets microlocalized on K disperse at the rate
(J#)~Y/2 thus “leak out” of B(0, R) after a time C; log A.
2. Sum the contributions of many trajectories. If P(1/2) < 0, dispersion

always beats interferences = leakage at rate
ux(®)ll L2 (B0, ry) < Celt~ 1B N1/, O
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Dynamical consequences of the resonance gap (d > 3 odd)

' ‘ 0 Imk>0
o : =
F o n 8 ° i

“\‘f;:: . . ; . ; 'kj. .

@ Exponential decay of the local energy
[MORAWETZ-RALSTON-STRAUSS,|IKAWA,CHRISTIANSON].
Vs > 0, Jas, C > 0, for any uo € H*(Q2) supported in B(0, R),

Er(u(t)) < Ce " |lui||3s, Vt>0.

@ Forany f € C°(Q), the correlation function

(fu@®) = > "™V (fiop) v m)pn + 05 ) Juall g

ImA;>—A



Resonance gap
How sharp is the pressure bound?
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Geometric models of scattering : X = I'\H? surface of constant negative
curvature and infinite area (— hyperbolic flow).

Resonances A7 = s;(1 — s;), with s; zero of the Selberg zeta function.

o P(1/2) <0+ < 1/2, where § = dmE=1,

Pressure bound: s; < § [PATTERSON,SULLIVAN], nontrivial for § < 1/2.
Improvements on this pressure bound:

Cont. spectrum

@ [Naup] uses Dolgopyat’s method to prove partial cancellations when
summing over trajectories = Re s; < d—e;.

@ [PETKOV-STOYANOV] apply the same method to N-obstacle scattering on
R? (non-eclipse condition) = Tm \; < P(1/2)—e;.
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Resonance gap for "thick" chaotic trapped sets

Ims| o
. .
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Cont. spectrum
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Fractal Uncertainty Principle [BOURGAIN-DYATLOV].
X, Y C [0,1] fractal sets, X (h), Y (h) their h-neighbourhoods.
Then 38 =3(X,Y) >0st,for0 < h <« 1,

[0 () (%) Dy () (—ih V)| 2 2 < A7

Replacing horizontal / vertical leaves by W* /W by , and using the fractal
structure of K, one obtains resonance gaps without conditions on P(1/2):

@ [DYATLOV-ZAHL,BOURGAIN-DYATLOV,JIN-ZHANG] Resonance gap on F\]HI2
for any value of 6 € (0, 1):
Je(6) > 0, Res; < 3—¢(6) forIms; > C.

@ [VacossIN (WIP)] 3 resonance gap for N-obstacle scattering on R?,

whatever the thickness of the hyperbolic repeller K.
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Counting long-living resonances for a chaotic K
Below the gap, how many resonances are there?

Theorem ([SUOSTRAND’90, SIOSTRAND-ZWORSKI'07, N-SJ-Zw’11])
The number resonances in a high-frequency box is bounded above by:

YA> Ao, #{AN<Red <A+w, ImA > —v} < CurAY,

where 1 = (box dimension).

dim(K)—1
2
Idea: count how many quantum states u, can be "hosted" on K
1. resonant states are microlocalized in a v/A-nbhd of K (h ~ A™1)
2. Each quantum state occupies a "Planck cell" of volume ~ h?

3. ~» count the number of “Planck cells” in this nbhd.

Conjecture: this upper bound is sharp, at least for v large enough
[LIN-ZwWORsSKI'04]: Fractal Weyl's law.
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Counting long-living resonances for a chaotic K

Ims| ¢ e ]
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What is the optimal resonance gap? Recall v, = —P(1), the local decay of a
classical density cloud of points.

Quantum decay rate = classical decay rate if Im A\; = —7./2.

Resonances with Im A\; > —v.;/2 are called "supersharp”.

Cont. spectrum

@ Conjecture [JakoBsON-NAUD] On T'\H?, there are at most finitely many
"supersharp resonances"” (at high frequency, Res; < g + o(1)).
They prove that there are infinitely many resonances with
Res; > 5(1g25)

@ [NAuD, DyaTLoV]: the counting of "supersharp resonances" is smaller
than the fractal Weyl’s law: Yo > 0, 37(a) > 0,
#{s;: Res; >6/2+a, |Ims;| < A} = QA FL7(2))



Fractal Weyl's law

Perspectives

@ improve the "pressure bound" in higher dimensions? Resonance gap for
thick trapped sets? (the Fractal uncertainy principle works in 2D only)

@ Lower bounds on the resonance counting are more difficult to obtain (cf.
nonselfadjoint spectral problem). Main trick: trace formulae
[SJIOSTRAND-ZWORSKI, GUILLOPE-ZWORSKI, JAKOBSON-NAUD]

@ Structure of the resonant modes v;(z)? At high frequency, they are
microlocalized along the unstable manifold of K [BoNY-MICHEL,KEATING et
al.,N-ZwoRskl]. Can we get local L” bounds? Difficulty: spectral
projectors are not orthogonal.

@ adapt to waves on compact domains / compact manifolds with chaotic
flow and nonuniform damping (cf. V.Petkov’s
talk)[SCHENCK,ANANTHARAMAN, RIVIERE]

@ adapt to nonscalar waves?

Merci pour votre attention
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High frequency / semiclassical regime (2)

The analysis can be generalized to

@ scalar waves scattered by nonflat metrics (g # go in @ bounded region of
RY), Aq — A,

@ quantum waves scattered by a potential semiclassical Schrédinger equ.

thowu = Phu, P, = —hQA—O—V(J:)

The wavepacket u(t) = e~ "*"n/"y,,, follows the Hamiltonian flow generated
by p(z, &) = |€> + V(x) on T*R%.

The resonances {z;(h)} (poles of x(P, — z)~"x) are associated with
metastable state v, (k) of lifetimes —2

[Tm z;] "

~» focus on the long living resonances Im z; = O(h).
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