Weyl asymptotics for the eigenvalues of dissipative operators and application to scattering

Vesselin Petkov
IMB, Université de Bordeaux

Resonances, Inverse Problems and Seismic waves, November 17, 2021

Outline

1. Dissipative eigenvalues and application to scattering theory
2. Results
3. Dirichlet-to-Neumann map and trace formula
4. Idea of the proof of Theorem 3

Dissipative eigenvalues and application to scattering theory.

Dissipative eigenvalues. Let $K \subset \mathbb{R}^{d}, d \geq 2$, be a bounded non-empty domain and let $\Omega=\mathbb{R}^{d} \backslash \bar{K}$ be connected. We suppose that the boundary Γ of K is C^{∞}. Consider the boundary problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta_{x} u+c(x) u_{t}=0 \text { in } \mathbb{R}_{t}^{+} \times \Omega, \tag{1}\\
\partial_{\nu} u-\gamma(x) u_{t}-\sigma(x) u=0 \text { on } \mathbb{R}_{t}^{+} \times \Gamma, \\
u(0, x)=f_{0}, u_{t}(0, x)=f_{1}
\end{array}\right.
$$

with initial data $f=\left(f_{1}, f_{2}\right)$ in the energy space $\mathcal{H}=H^{1}(\Omega) \times L^{2}(\Omega)$ with norm

$$
\|f\|=\left(\int_{\Omega}\left(\left|\nabla_{x} f_{1}\right|^{2}+\left|f_{2}\right|^{2}\right) d x+\int_{\Gamma} \sigma(x)\left|f_{1}\right|^{2} d S_{x}\right)^{1 / 2} .
$$

Here ν is the unit outward normal to 「 pointing into $\Omega, \gamma(x) \geq 0, \sigma(x) \geq 0$ are C^{∞} functions on Γ and $0 \leq c(x) \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

The solution of (5) is given by $V(t) f=e^{t G} f, t \geq 0$, where $V(t)$ is a contraction semi-group in \mathcal{H} whose generator $G=\left(\begin{array}{ll}0 & 1 \\ \Delta & c\end{array}\right)$ has a domain $D(G)$ which is the closure in the graph norm of functions $\left(f_{1}, f_{2}\right) \in C_{(0)}^{\infty}\left(\mathbb{R}^{n}\right) \times C_{(0)}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying the boundary condition $\partial_{\nu} f_{1}-\gamma f_{2}-\sigma(x) f_{1}=0$ on Γ. The spectrum of G in $\operatorname{Re} z<0$ is formed by isolated eigenvalues with finite multiplicity. For simplicity in the following we assume that $c(x)=0, \sigma(x)=0$. Notice that if $G f=\lambda f$ with $f=\left(f_{1}, f_{2}\right) \neq 0$ and $\partial_{\nu} f_{1}-\gamma f_{2}=0$ on Γ, we get

$$
\left\{\begin{array}{l}
\left(\Delta-\lambda^{2}\right) f_{1}=0 \text { in } \Omega, \tag{2}\\
\partial_{\nu} f_{1}-\lambda \gamma f_{1}=0 \text { on } \Gamma .
\end{array}\right.
$$

Moreover, $u(t, x)=V(t) f=e^{\lambda t} f(x), \operatorname{Re} \lambda<0$, is a solution of (5) with exponentially decreasing global energy. Such solutions are called asymptotically disappearing and they perturb the scattering. On the other hand, a solution $V(t) f$ is called disappearing if there exists $T>0$ such that $V(t) f \equiv 0$ for $\forall t \geq T$.
I. It was proved (Colombini, -P. Rauch, (2014)) that if we have a least one eigenvalue λ of G with $\operatorname{Re} \lambda<0$, then the wave operators $W_{ \pm}$are not complete, that is Ran $W_{-} \neq \operatorname{Ran} W_{+}$and we cannot define the scattering operator S by $S=W_{+}^{-1} \circ W_{-}$. Idea of the proof.
Introduce the spaces

$$
H_{+}=\{f \in \mathcal{H}: V(t) f \rightarrow 0 \text { as } t \rightarrow+\infty\}, H_{-}=\left\{f \in \mathcal{H}: V^{*}(t) f \rightarrow 0 \text { as } t \rightarrow+\infty\right\} .
$$

First one proves that $\overline{\operatorname{Ran} W_{ \pm}}=\mathcal{H} \ominus H_{ \pm}$. The equality Ran $W_{-}=\operatorname{Ran} W_{+}$yields $H_{+}=H_{-}$. If f is an eigenfunction with eigenvalue $\lambda, \operatorname{Re} \lambda<0$, clearly $f \in H_{+}$. Second, we show that $f \in H_{-}$implies that $V(t) f$ is disappearing which is impossible. Thus $f \notin H_{-}$. We may define S by using another evolution operator.
II. For problems associated to unitary groups (the global energy is conserved in time) the associated scattering operator $S(z): L^{2}\left(\mathbb{S}^{d-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right)$ satisfies

$$
S^{-1}(z)=S^{*}(\bar{z}), z \in \mathbb{C}
$$

if $S(z)$ is invertible at z. This implies that $S(z)$ is invertible for $\operatorname{Im} z>0$, since $S(z)$ and $S^{*}(z)$ are analytic for $\operatorname{Im} z<0$. For dissipative boundary problems the above relation is not true and $S\left(z_{0}\right)$ may have a non trivial kernel for some $z_{0}, \operatorname{lm} z_{0}>0$. In this case Lax and Phillips proved that $\mathbf{i} z_{0}$ is an eigenvalue of G.

It is easy to see that if we have one disappearing solution, then the space

$$
H_{T}=\{f \in \mathcal{H}: V(t) f \equiv 0, t \geq T\}
$$

has infinite dimension. On the other hand, Majda (1975) established that if K and $\gamma(x)$ are analytic, then in the case $\gamma(x) \neq 1, \forall x \in \Gamma$, there are no disappearing solutions. We consider two cases:
(A) : $0<\gamma(x)<1, \forall x \in \Gamma,(\mathbf{B}): \gamma(x)>1, \forall x \in \Gamma$.

2. Results

Proposition 1 (-P. (2016), (2021))

Let $K=B_{3}=\left\{x \in \mathbb{R}^{3}:|x| \leq 1\right\}$ and suppose that $\gamma \equiv$ const. Then
(1) $\gamma \equiv 1$. There are no eigenvalues of G in \mathbb{C}.
(2) $\gamma>1$. All eigenvalues of G are real, we have an infinite number of eigenvalues of G and

$$
\sigma_{p}(G) \subset\left(-\infty,-\frac{1}{\gamma-1}\right]
$$

(3) $0<\gamma<1$. The eigenvalues of G are not real, we have an infinite number eigenvalues of G and

$$
\sigma_{p}(G) \subset\left\{\lambda \in \mathbb{C}:|\operatorname{Re} \lambda|<2(1-\gamma)|\operatorname{Im} \lambda|^{2}, \operatorname{Re} \lambda<0\right\}
$$

We see that when $\gamma \searrow 1$ and $\gamma \nearrow 1$ one obtains very large regions without eigenvalues. The result (1) has been anounced by Majda (1975) without proof.

Eigenvalues free regions

Theorem 1 (-P. (2016))

In the case (A) for every $\epsilon, 0<\epsilon \ll 1$, the eigenvalues of G lie in the region

$$
\Lambda_{\epsilon}=\left\{\lambda \in \mathbb{C}:|\operatorname{Re} \lambda| \leq C_{\epsilon}\left(|\operatorname{Im} \lambda|^{\frac{1}{2}+\epsilon}+1\right), \operatorname{Re} \lambda<0\right\} .
$$

In the case (B) for every $\epsilon, 0<\epsilon \ll 1$, and every $M \in \mathbb{N}$ the eigenvalues of G lie in the region $\Lambda_{\epsilon} \cup \mathcal{R}_{M}$, where

$$
\mathcal{R}_{M}=\left\{|\operatorname{Im} \lambda| \leq C_{M}(1+|\operatorname{Re} \lambda|)^{-M}, \operatorname{Re} \lambda<0\right\} .
$$

For strictly convex obstacles K we improve the above result in the case (B).

Theorem 2 (-P. (2016))

Assume K strictly convex. In the case (B) for every $M \in \mathbb{N}$ the eigenvalues of G lie in the region $\mathcal{R}_{M} \cup\{|\lambda|<R, \operatorname{Re} \lambda<0\}$.

By applying the results of Vodev (2017) for the Dirichlet-to-Neumann map, it is possible to improve the above result replacing the region Λ_{ϵ} by a strip

$$
\mathcal{M}=\left\{\lambda \in \mathbb{C}:-R_{0} \leq \operatorname{Re} \lambda<0\right\}, R_{0}>0 .
$$

Thus for strictly convex obstacles the eigenvalue free regions correspond to the case of a ball.

Previous results have been proved by Majda (1976). He proved that in the case (A) the eigenvalues lie in

$$
E_{1}=\left\{\lambda \in \mathbb{C}:|\operatorname{Re} \lambda| \leq C_{1}\left(|\operatorname{Im} \lambda|^{3 / 4}+1\right), \operatorname{Re} \lambda<0\right\}
$$

while in the case (B) he showed that the eigenvalues lie in $E_{1} \cup E_{2}$, where

$$
E_{2}=\left\{\lambda \in \mathbb{C}:|\operatorname{Im} \lambda| \leq C_{2}\left(|\operatorname{Re} \lambda|^{1 / 2}+1\right), \operatorname{Re} \lambda<0\right\} .
$$

Figure 1: Eigenvalues for $0<\gamma(x)<1$

Figure 2: Eigenvalues for $\gamma(x)>1$

Figure 3: Improved region of eigenvalues for $\gamma(x)>1$

Weyl asymptotic for the eigenvalues in the case (B)

Introduce the set
$\Lambda=\left\{\lambda \in \mathbb{C}:|\operatorname{Im} \lambda| \leq C_{2}(1+|\operatorname{Re} \lambda|)^{-2}, \operatorname{Re} \lambda \leq-C_{0} \leq-1\right\}, \frac{2 C_{2}}{C_{0}} \leq 1$, containing $\mathcal{R}_{M}, \forall M \geq 2$ modulo compact set. Given $\lambda \in \sigma_{p}(G)$, we define the algebraic multiplicity of λ by

$$
\operatorname{mult}(\lambda)=\operatorname{tr} \frac{1}{2 \pi \mathbf{i}} \int_{|z-\lambda|=\epsilon}(z-G)^{-1} d z
$$

with $0<\epsilon \ll 1$ sufficiently small.

Theorem 3 (-P. (2021))

Assume $\gamma(x)>1$ for all $x \in \Gamma$. Then the counting function of the eigenvalues in \wedge taken with their multiplicities has the asymptotic

$$
\begin{array}{r}
\sharp\left\{\lambda_{j} \in \sigma_{p}(G) \cap \Lambda:\left|\lambda_{j}\right| \leq r, r \geq C_{\gamma}\right\} \\
=\frac{\omega_{d-1}}{(2 \pi)^{d-1}}\left(\int_{\Gamma}\left(\gamma^{2}(x)-1\right)^{(d-1) / 2} d S_{x}\right) r^{d-1}+\mathcal{O}_{\gamma}\left(r^{d-2}\right), r \rightarrow \infty, \tag{3}
\end{array}
$$

ω_{d-1} being the volume of the unit ball $\left\{x \in \mathbb{R}^{d-1}:|x| \leq 1\right\}$.

Remark 1

For strictly convex obstacles we obtain the asymptotic of all eigenvalues. The constant C_{γ} depend on γ. When $\min _{x \in \Gamma} \gamma(x) \nearrow 1$, one has $C_{\gamma} \rightarrow+\infty$. This is justified by the proof of Theorem 3 and by the example for the ball B_{3}.

Remark 2

The behavior of the eigenvalues in the case $0<\gamma(x)<1$ is an open problem. In this case the continuation of the exterior Dirichlet-to-Neumann operator $\mathcal{N}(\lambda)$ defined below across the imaginary axis plays an important role. We conjecture that for strictly convex obstacles one has the asymptotic

$$
\begin{align*}
& \sharp\left\{\lambda_{j} \in \sigma_{p}(G) \cap\left\{\lambda \in \mathbb{C}:-R_{0} \leq \operatorname{Re} \lambda<0,\left|\lambda_{j}\right| \leq r, r \geq C_{\gamma}\right\}\right. \\
= & \frac{\omega_{d-1}}{(2 \pi)^{d-1}}\left(\int_{\Gamma}\left(1-\gamma^{2}(x)\right)^{(d-1) / 2} d S_{x}\right) r^{d-1}+\mathcal{O}_{\gamma}\left(r^{d-2}\right), r \rightarrow \infty \tag{4}
\end{align*}
$$

3. Dirichlet-to-Neumann map and trace formula

For $\operatorname{Re} \lambda<0$ introduce the exterior Dirichlet-to-Neumann map

$$
\mathcal{N}(\lambda):\left.H^{s}(\Gamma) \ni f \longrightarrow \partial_{\nu} u\right|_{\Gamma} \in H^{s-1}(\Gamma)
$$

where u is the solution of the problem

$$
\left\{\begin{array}{l}
\left(-\Delta+\lambda^{2}\right) u=0 \text { in } \Omega, u \in H^{2}(\Omega), \tag{5}\\
u=f \text { on } \Gamma, \\
u:(\mathbf{i} \lambda)-\text { outgoing. }
\end{array}\right.
$$

A function $u(x)$ is (i$\lambda)$-outgoing if there exists $R>\rho_{0}$ and $g \in L_{\text {comp }}^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
u(x)=\left(-\Delta_{0}+\lambda^{2}\right)^{-1} g,|x| \geq R
$$

where $R_{0}(\lambda)=\left(-\Delta_{0}+\lambda^{2}\right)^{-1}$ is the outgoing resolvent of the free Laplacian $-\Delta_{0}$ in \mathbb{R}^{d} which is analytic in \mathbb{C} for d odd and on the logarithmic covering of \mathbb{C} for d even.

The operator $\mathcal{N}(\lambda)$ can be expressed by the cut-off resolvent $\chi\left(-\Delta_{D}+\lambda^{2}\right)^{-1} \chi$ of the Dirichlet Laplacian Δ_{D}, hence $\mathcal{N}(\lambda)$ is analytic in $\{\lambda: \operatorname{Re} \lambda<0\}$. The boundary condition for an eigenfunction g becomes

$$
\mathcal{C}(\lambda) f:=\mathcal{N}(\lambda) f-\lambda \gamma f=0, f=\left.g\right|_{\Gamma} .
$$

The operator $\mathcal{N}(\lambda): H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$ is compact and invertible in $\{z: \operatorname{Re} \lambda<0\}$ since there are no resonances of the Neumann problem in $\{z: \operatorname{Re} z<0\}$. We write

$$
\mathcal{C}(\lambda)=\left(I d-\lambda \gamma \mathcal{N}(\lambda)^{-1}\right) \mathcal{N}(\lambda)
$$

and by Fredholm theorem one deduces that $\mathcal{C}(\lambda)^{-1}$ is meromorphic in $\{\lambda: \operatorname{Re} \lambda<0\}$.

Trace formula

Proposition 2

Let $\alpha \subset\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda<0\}$ be a closed positively oriented curve without self intersections. Assume that $\mathcal{C}(\lambda)^{-1}$ has no poles on α. Then

$$
\begin{equation*}
\operatorname{tr}_{\mathcal{H}} \frac{1}{2 \pi i} \int_{\alpha}(\lambda-G)^{-1} d \lambda=\operatorname{tr}_{H^{1 / 2}(\Gamma)} \frac{1}{2 \pi i} \int_{\alpha} \mathcal{C}(\lambda)^{-1} \frac{\partial \mathcal{C}}{\partial \lambda}(\lambda) d \lambda . \tag{6}
\end{equation*}
$$

Since G has only point spectrum in $\operatorname{Re} \lambda<0$, the left hand term in (6) is equal to the number of the eigenvalues of G in the domain ω bounded by α counted with their algebraic multiplicities. Setting $\tilde{\mathcal{C}}(\lambda)=\frac{\mathcal{N}(\lambda)}{\lambda}-\gamma$, we write the right hand side of (6) as

$$
\begin{equation*}
\operatorname{tr} \frac{1}{2 \pi i} \int_{\alpha} \tilde{\mathcal{C}}(\lambda)^{-1} \frac{\partial \tilde{\mathcal{C}}}{\partial \lambda}(\lambda) d \lambda \tag{7}
\end{equation*}
$$

Set $\lambda=-\frac{1}{\tilde{h}}, 0<\operatorname{Re} \tilde{h} \ll 1$ and consider the problem

$$
\left\{\begin{array}{l}
\left(-\tilde{h}^{2} \Delta+1\right) u=0 \text { in } \Omega \tag{8}\\
-\tilde{h} \partial_{\nu} u-\gamma u=0 \text { on } \Gamma \\
u-\text { outgoing. }
\end{array}\right.
$$

We introduce the operator $C(\tilde{h}):=-\tilde{h} \mathcal{N}\left(-\tilde{h}^{-1}\right)-\gamma$ and using (7), the trace formula (6) becomes

$$
\begin{equation*}
\operatorname{tr} \frac{1}{2 \pi i} \int_{\alpha}(\lambda-G)^{-1} d \lambda=\operatorname{tr} \frac{1}{2 \pi i} \int_{\tilde{\alpha}} C(\tilde{h})^{-1} \dot{C}(\tilde{h}) d \tilde{h}, \tag{9}
\end{equation*}
$$

where \dot{C} denote the derivative with respect to \tilde{h} and $\tilde{\alpha}$ is the curve $\tilde{\alpha}=\left\{z \in \mathbb{C}: z=-\frac{1}{w}, w \in \alpha\right\}$.

Recall that $\Lambda=\left\{\lambda \in \mathbb{C}:|\operatorname{Im} \lambda| \leq C_{2}(|\operatorname{Re} \lambda|+1)^{-2}, \operatorname{Re} \lambda \leq-C_{0} \leq-1\right\}$. For $\lambda \in \Lambda$ one has $|\operatorname{Im} \lambda| \leq 1$ and this implies $\tilde{h} \in L$, where

$$
\begin{equation*}
L:=\left\{\tilde{h} \in \mathbb{C}:|\operatorname{Im} \tilde{h}| \leq C_{1}|\tilde{h}|^{4},|\tilde{h}| \leq C_{0}^{-1}, \operatorname{Re} \tilde{h}>0\right\} . \tag{10}
\end{equation*}
$$

We write the points in L as $\tilde{h}=h(1+\mathbf{i} \eta)$ with $0<h \leq h_{0} \leq C_{0}^{-1}, \eta \in \mathbb{R},|\eta| \leq h^{2}$. Therefore the problem (8) becomes

$$
\left\{\begin{array}{l}
\left(-h^{2} \Delta-z\right) u=0 \text { in } \Omega, \tag{11}\\
-(1+\mathbf{i} \eta) h \partial_{\nu} u-\gamma u=0 \text { on } \Gamma, \\
u-\text { outgoing. }
\end{array}\right.
$$

with $z=-\frac{1}{(1+\mathbf{i} \eta)^{2}}=-1+s(\eta),|s(\eta)| \leq\left(2+h^{2}\right) h^{2} \leq 3 h^{2}$.

Semi-classical parametrix

Given $f \in H^{s}(\Gamma)$, consider the problem

$$
\left\{\begin{array}{l}
\left(-h^{2} \Delta-z\right) u=0 \text { in } K, \tag{12}\\
u=f \text { on } \Gamma .
\end{array}\right.
$$

Let $z \in Z_{1} \cup Z_{2} \cup Z_{3}$ and $\lambda=\mathbf{i} \frac{\sqrt{z}}{h}$, where

$$
Z_{1}=\{\operatorname{Re} z=1,0 \leq|\operatorname{Im} z| \leq 1\}, Z_{1}(\delta)=Z_{1} \cap\left\{|\operatorname{Im} z| \geq h^{\delta}\right\}
$$

$$
Z_{2}=\{\operatorname{Re} z=-1,0 \leq|\operatorname{Im} z| \leq 1\}, Z_{3}=\{|\operatorname{Re} z| \leq 1,|\operatorname{Im} z|=1\}
$$

Figure 4: Contours $Z_{1}(\delta), Z_{2}, Z_{3}$

Let γ_{0} denote the trace on Γ. Consider the problem (12) for $z \in Z_{1}(1 / 2-\epsilon) \cup Z_{2} \cup Z_{3}$ with $0<\epsilon \ll 1$ and define the semi-classical interior Dirichlet-to-Neumann map

$$
\mathcal{N}_{\text {int }}(z, h): H_{h}^{s}(\Gamma) \ni f \longrightarrow-\mathbf{i} \gamma_{0} h \partial_{\nu} u \in H_{h}^{s-1}(\Gamma)
$$

Here $H_{h}^{s}(\Gamma)$ is the semi-classical Sobolev space with norm $\left\|\langle h D\rangle^{s} u\right\|_{L^{2}(\Gamma)}$. G. Vodev (2015) constructed for domains with arbitrary geometry a semi-classsical parametrix for (7) as a FIO with complex phase $\varphi\left(x, \xi^{\prime} ; z\right)$ in a small neighborhood of the boundary Γ. Close to the boundary introduce geodesic normal coordinates (x^{\prime}, x_{d}) in a neighborhood of a point $x_{0} \in \Gamma$ with $x_{d}=0$ on $\Gamma\left(\right.$ we take $\left.x_{d}=\operatorname{dist}(x, \Gamma)\right)$. The eikonal equation and the transport equations can be solved only modulo $\mathcal{O}\left(x_{d}^{N}\right), \forall N \gg 1$.

Set $x=\left(x^{\prime}, x_{d}\right), \xi=\left(\xi^{\prime}, \xi_{d}\right)$. We say that $a\left(x^{\prime}, \xi^{\prime} ; h\right) \in S_{\delta}^{k}(\Gamma)$ if the following conditions are satisfied:

$$
\left|\partial_{x}^{\prime \alpha} \partial_{\xi^{\prime}}^{\beta} a\left(x, \xi^{\prime} ; h\right)\right| \leq C_{\alpha, \beta} h^{-\delta(|\alpha|+|\beta|)}\left\langle\xi^{\prime}\right\rangle^{k-|\beta|}, \forall \alpha, \forall \beta,
$$

where $\left\langle\xi^{\prime}\right\rangle=\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2}$. For $a \in S_{\delta}^{k}(\Gamma)$, we consider the operator

$$
\left(O p_{h}(a) f\right)(x)=(2 \pi h)^{-d+1} \iint e^{i\left(x^{\prime}-y^{\prime}, \xi^{\prime}\right\rangle / h} a\left(x, \xi^{\prime} ; h\right) f\left(y^{\prime}\right) d y d \xi^{\prime}
$$

We have a calculus for the h-pseudo-differential operators with symbols in S_{δ}^{k} if $0<\delta<1 / 2$. The semiclassical symbol of $-h^{2} \Delta$ becomes $\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)+h q(x) \xi_{d}$ and $r\left(x^{\prime}, 0, \xi^{\prime}\right)=r_{0}\left(x^{\prime}, \xi^{\prime}\right)$ is the principal symbol of the Laplace-Beltrami operator $-\left.h^{2} \Delta\right|_{r}$ on Γ.

For $z \in Z_{1} \cup Z_{2} \cup Z_{3}$, let

$$
\rho\left(x^{\prime}, \xi^{\prime}, z\right)=\sqrt{z-r_{0}\left(x^{\prime}, \xi^{\prime}\right)} \in C^{\infty}\left(T^{*}(\Gamma)\right), \operatorname{Im} \rho>0
$$

be the root of the equation $\rho^{2}+r_{0}\left(x^{\prime}, \xi^{\prime}\right)-z=0$. It is easy to see that $\rho \in S_{1 / 2-\epsilon}^{1}$, if $z \in Z_{1}(1 / 2-\epsilon), \rho \in S_{0}^{1}$, if $z \in Z_{2} \cup Z_{3}$.

Proposition 3 (Vodev, (2015))

Given $0<\epsilon \ll 1$, there exists $0<h_{0}(\epsilon) \ll 1$ such that for $z \in Z_{1}(1 / 2-\epsilon)$ and $0<h \leq h_{0}(\epsilon)$ we have

$$
\begin{equation*}
\left\|\mathcal{N}(z, h)-O p_{h}(\rho+h b)\right\|_{L^{2}(\Gamma) \rightarrow H_{s}^{1}(\Gamma)} \leq \frac{C h}{\sqrt{|\operatorname{Im} z|}} \tag{13}
\end{equation*}
$$

where $C>0$ is independent of h, z, ϵ and $b \in S_{0}^{0}$ does not depend on z, h. Moreover, for $z \in Z_{2} \cup Z_{3}$ the above estimate holds with $|\operatorname{Im} z|$ replaced by 1 .

Exterior Dirichlet-to-Neumann map

For our analysis we need to apply the exterior Dlrichlet-to-Neumann map

$$
\mathcal{N}_{\text {ext }}(z, h): H_{h}^{s}(\Gamma) \ni f \longrightarrow-\mathbf{i} \gamma_{0} h \partial_{\nu} u \in H_{h}^{s-1}(\Gamma)
$$

where u is the outgoing solution of the problem

$$
\left(-h^{2} \Delta-z\right) u=0 \text { in } \Omega=\mathbb{R}^{d} \backslash \bar{K},\left.u\right|_{\Gamma}=f .
$$

The operator $\mathcal{N}_{\text {ext }}(z, h)$ is a meromorphic function related to the cut-off outgoing resolvent $\chi\left(h^{2} G_{D}-z\right)^{-1} \chi$ with poles in the half-plane $\{\operatorname{Im} z<0\}$. A result completely analogous to (13) was proved by -P. (2016). For strictly convex obstacles K and $\operatorname{Re} z \sim 1,|\operatorname{Im} z| \leq c_{0} h^{2 / 3} \mathrm{Sjö}_{\mathrm{strand}}(2014)$ obtained results similar to Prop. 3. The case $h^{1 / 2-\epsilon} \leq \operatorname{Im} z \leq c_{0} h^{2 / 3}$ for strictly convex obstacles has been covered by -P. (2016) by a semi-classical parametrix construction inspired by that of Vodev.

4. Idea of the proof of Theorem 3

We use a parametrix $T(z, h)$ for $\mathcal{N}_{\text {ext }}(z, h)=\mathcal{N}(z, h)$ for $z=-1+s(\eta),|s(\eta)| \leq h^{2}$ such that

$$
\begin{equation*}
\|\mathcal{N}(z, h) f-T(z, h) f\|_{H_{h}^{m}(\Gamma)} \leq C_{m, N} h^{-s_{d}+N}\|f\|_{L^{2}(\Gamma)}, \forall N \in \mathbb{N} . \tag{14}
\end{equation*}
$$

Notice that $\mathcal{N}(-1, h)$ is self-adjoint. Introduce the self-adjoint operator

$$
P(h):=T(-1, h)-\gamma\left(x^{\prime}\right), 0<h \leq h_{0} .
$$

The semiclassical principal symbol of $P(h)$ is $p_{1}\left(x^{\prime}, \xi^{\prime}\right)=-\mathbf{i} \sqrt{-1-r_{0}}-\gamma\left(x^{\prime}\right)=\sqrt{1+r_{0}}-\gamma\left(x^{\prime}\right)$. Since $\min _{x^{\prime}} \gamma\left(x^{\prime}\right)>1$, this symbol vanishes when

$$
r_{0}\left(x^{\prime}, \xi^{\prime}\right)=\gamma^{2}\left(x^{\prime}\right)-1>0
$$

We will treat $P(h)$ as a classical pdo with symbol

$$
\sqrt{1+h^{2} r_{0}\left(x^{\prime}, \xi^{\prime}\right)}-\gamma(x)+P_{0}(h), P_{0}(h) \in S^{0}
$$

We apply the approach of Sjöstrand-Vodev (1997) concerning the asymptotic of Rayleigh resonances close to the real axis. Let

$$
\mu_{1}(h) \leq \mu_{2}(h) \leq \ldots \leq \mu_{m}(h) \leq \ldots
$$

be the eigenvalues of $P(h)$ counted with their multilipcities. The points $0<h_{k} \leq h_{0}$, where $\mu_{k}\left(h_{k}\right)=0$ correspond to points for which $P(h)$ is not invertible. For large fixed k_{0}, depending on h_{0}, the eigenvalues $\mu_{k}\left(h_{0}\right)$ are positive, whenever $k>k_{0}$. Thus if $\mu_{k}\left(r^{-1}\right)<0, k>k_{0}$ and $r>h_{0}^{-1}$, we have $\mu_{k}\left(h_{k}\right)=0$ for some $r^{-1}<h_{k}<h_{0}$. However, a more precise analysis of the behaviour of $\mu_{k}(h)$ and the relation of h_{k} to
 asymptotic of the counting function of the negative eigenvalues of $P\left(r^{-1}\right), r \geq C_{\gamma}=\left(h_{0}(\gamma)\right)^{-1}$ given by the well known formula

$$
\begin{equation*}
\frac{r^{d-1}}{(2 \pi)^{d-1}} \iint_{r_{0}\left(x^{\prime}, \xi^{\prime}\right) \leq \gamma^{2}\left(x^{\prime}\right)-1} d x^{\prime} d \xi^{\prime}+\mathcal{O}_{\gamma}\left(r^{d-2}\right) \tag{15}
\end{equation*}
$$

Main steps

1. Examine $\frac{d P(h)}{d h}$ and $\frac{d \mu_{k}(h)}{d h}$ and prove that the zero h_{k} of $\mu_{k}(h)$ is unique.
2. Study the continuation $P(\tilde{h})$ for $\tilde{h}=h(1+\mathbf{i} \eta),|\eta| \leq h^{2}$ and show that

$$
\begin{equation*}
\left\|P^{-1}(\tilde{h})\right\|_{\mathcal{L}\left(H^{s}, H^{s+1}\right)} \leq C_{s} \frac{1}{|\eta|}, \eta \neq 0 . \tag{16}
\end{equation*}
$$

3. Establish a trace formula

$$
\operatorname{tr}_{H^{1 / 2}(\Gamma)} \frac{1}{2 \pi \mathbf{i}} \int_{\gamma_{k, p}} P^{-1}(\tilde{h}) \frac{d P(\tilde{h})}{d \tilde{h}} d \tilde{h}
$$

with suitable curve $\gamma_{k, p}$ counting the number of h_{k} in a domain bounded by $\gamma_{k, p}$.
4. Show that the trace formulas for $C(\tilde{h})$ and $P(\tilde{h})$ over $\gamma_{k, p}$ differ by a negligible term $\mathcal{O}_{m}\left(h^{p}\right), \forall p \in \mathbb{N}$. Thus we obtain a map $\ell: h_{k} \rightarrow \ell\left(h_{k}\right)=\lambda_{k}$ between the set of points $\left.\left.h_{k} \in\right] 0, h_{0}\right]$ and the eigenvalues $\lambda_{k} \in L$.

Idea for the Step 1

Set $\min _{x \in \Gamma} \gamma(x)=c_{0}>1, \max _{x \in \Gamma} \gamma(x)=c_{1} \geq c_{0}$ and choose a constant $C=\frac{2}{c_{1}^{2}}$. We denote by $(.,$.$) the scalar product in L^{2}(\Gamma)$ and for two self adjoint operators L_{1}, L_{2} the inequality $L_{1} \geq L_{2}$ means $\left(L_{1} u, u\right) \geq\left(L_{2} u, u\right), \forall u \in L^{2}(\Gamma)$.

Proposition 4

Let $\langle h \Delta\rangle=\left(1-h^{2} \Delta_{\Gamma}\right)^{1 / 2}$ and let $\epsilon=C\left(c_{0}-1\right)^{2}<2$. Then for h sufficiently small we have

$$
\begin{equation*}
h \frac{\partial P(h)}{\partial h}+C P(h)\langle h \Delta\rangle^{-1 / 2} P(h) \geq \epsilon\left(1-\frac{C_{2}}{\epsilon} h\right)\langle h \Delta\rangle \tag{17}
\end{equation*}
$$

with a constant $C_{2}>0$ independent of h and ϵ.

Remark 3

The values of ϵ depends on $\left(c_{0}-1\right)^{2}$ and $\epsilon \searrow 0$ when $c_{0} \searrow 1$. Also $0<h<\frac{\epsilon}{C_{2}}$ so h_{0} and $\left.\left.h_{k} \in\right] 0, h_{0}\right]$ must have order $o(\epsilon)$. Hence we need to take $r \geq \frac{1}{o(\epsilon)}$ in (15).

Figure 5: eigenvalue $\mu_{k}(h)$ for $1 / r \leq h \leq h_{o}$

Let h_{1} be small and let $\mu_{k}\left(h_{1}\right)$ have multiplicity m. For h close to h_{1} one has exactly m eigenvalues and we denote by $F(h)$ the space spanned by them. We can find a small interval (α, β) around $\mu_{k}\left(h_{1}\right)$, independent on h, containing the eigenvalues spanning $F(h)$. Given $h_{2}>h_{1}$ close to h_{1}, consider a normalised eigenfunction $e\left(h_{2}\right)$ with eigenvalue $\mu_{k}\left(h_{2}\right)$. Denote by dot the derivative with respect to h. Let $\pi(h)=E_{(\alpha, \beta)}$ be the spectral projection of $P(h)$, hence $F(h)=\pi(h) L^{2}(\Gamma)$. Then $(\pi(h)-I) \pi(h)=0$ yields $\pi(h) \dot{\pi}(h) \pi(h)=0$ and $\left.\dot{\pi}(h)\right|_{F(h)}=0$. We construct a smooth extension $e(h)=\pi(h) e\left(h_{2}\right) \in F(h), h \in\left[h_{1}, h_{2}\right]$ of $e\left(h_{2}\right)$ with $\|e(h)\|=1, \dot{e}(h) \in F(h)^{\perp}$. Obviously, $e\left(h_{1}\right)$ will be normalised eigenfunction with eigenvalue $\mu_{k}\left(h_{1}\right)$. One obtains

$$
h \dot{P}(h)=h^{2} \Delta\langle h D\rangle^{-1}+h L_{0}=P(h)-\langle h D\rangle^{-1}+h L_{1}
$$

with zero order operators L_{0}, L_{1} and this implies $|(\dot{P}(h) e(h), e(h))| \leq C_{0} h^{-1}, h \in\left[h_{1}, h_{2}\right]$. Therefore

$$
\left|\mu_{k}\left(h_{2}\right)-\mu_{k}\left(h_{1}\right)\right|=\left|\int_{h_{1}}^{h_{2}} \frac{d}{d h}(P(h) e(h), e(h)) d h\right| \leq C_{0} \int_{h_{1}}^{h_{2}} h^{-1} d h \leq \frac{C_{0}}{h_{1}}\left(h_{2}-h_{1}\right) .
$$

Assuming $\mu_{k}(h) \in[-\delta, \delta]$ for $h \in\left[h_{1}, h_{2}\right]$, we deduce that $\mu_{k}(h)$ is locally Lipschitz function in h and its almost defined derivative satisfies $\left|h \frac{\partial \mu_{k}(h)}{\partial h}\right| \leq C_{0}$. To estimate $h \frac{\partial \mu_{k}(h)}{\partial h}$ from below, we exploit Proposition 4. For $h \leq h_{0} \leq \frac{\epsilon}{8 C_{2}}$ with $C_{1}=C_{2} / \epsilon$ we have

$$
\begin{gathered}
h \frac{\partial \mu_{k}(h)}{\partial h}=(h \dot{P}(h) e(h), e(h)) \\
\geq \epsilon\left(1-C_{1} h\right)(\langle h D\rangle e(h), e(h))-C\left(\langle h D\rangle^{-1} P(h) e(h), P(h) e(h)\right) \\
\geq \epsilon\left(1-C_{1} h\right)-C \delta^{2} \geq \frac{3 \epsilon}{4},
\end{gathered}
$$

choosing $\frac{c_{0}-1}{2}>\delta=\left(c_{0}-1\right) \sqrt{\frac{1}{4}-C_{1} h_{0}} \geq \frac{\left(c_{0}-1\right)}{2 \sqrt{2}}$. Consequently, for $h \in\left[h_{1}, h_{2}\right]$ one has

$$
\mu_{k}\left(h_{2}\right)-\mu_{k}\left(h_{1}\right) \geq \frac{3 \epsilon}{4} \int_{h_{1}}^{h_{2}} h^{-1} d h \geq \frac{3 \epsilon}{4 h_{2}}\left(h_{2}-h_{1}\right)
$$

and we obtain $\frac{3 \epsilon}{4} \leq h \frac{d \mu_{k}(h)}{d h} \leq C_{0}$.

We fix $c_{0}=\frac{3 \epsilon}{4}$ and $h_{0}>0$. Let $p>d$ be fixed and let

$$
I_{k, p}=\left\{h \in \mathbb{R}:\left|h-h_{k}\right| \leq \frac{h^{p+1}}{c_{0}}\right\} .
$$

Then for $\left.h \in] 0, h_{0}\right] \backslash I_{k, p}$ one has $\left|\mu_{k}(h)\right| \geq h^{p}$. Thus for $\left.\left.h \in\right] 0, h_{0}\right] \backslash\left(\bigcup_{k \geq k_{0}} I_{k, p}\right)$ one obtains

$$
\begin{equation*}
\left\|P(h)^{-1}\right\|_{L^{2} \rightarrow L^{2}}=\mathcal{O}\left(h^{-p}\right) \tag{18}
\end{equation*}
$$

On the other hand, $\sum_{k \geq k_{0}}\left|I_{k, p}\right|=\mathcal{O}\left(h^{p+2-d}\right)$. We can construct disjoint intervals $J_{k, p}$ so that the estimate (18) holds for $\left.h \in] 0, h_{0}\right] \backslash\left(\bigcup_{k \geq k_{0}} J_{k, p}\right)$ with $\left|J_{k, p}\right|=\mathcal{O}\left(h^{p+2-d}\right)$. We choose a curve $\gamma_{k, p} \subset \mathbb{C}$ bounded by four segments

$$
\operatorname{Re} \tilde{h} \in \partial J_{k, p}, \operatorname{Im} \tilde{h}= \pm \operatorname{Re} \tilde{h}^{p+1}
$$

Next we extend the estimate (18) to

$$
\begin{equation*}
\left\|P(\tilde{h})^{-1}\right\|_{L^{2} \rightarrow L^{2}}=\mathcal{O}\left((\operatorname{Re} \tilde{h})^{-p}\right), \tilde{h} \in \gamma_{k, p} \tag{19}
\end{equation*}
$$

THANK YOU!

