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Dissipative eigenvalues and application to scattering theory.
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Dissipative eigenvalues. Let K C R, d > 2, be a bounded non-empty domain and
let Q =R\ K be connected. We suppose that the boundary I' of K is C*. Consider
the boundary problem

use — Dyt + c(x)uy = 0in R x Q,
Oyt —y(X)ur —o(x)u=00on R} x T, (1)
u(0,x) = fo, ur(0,x) =

with initial data f = (f;, f) in the energy space H = H(Q) x L?(Q) with norm
1/2
£l = (/(vaf1!2+ !f2|2)dx+/a(x)|m2dsx) .
Q r

Here v is the unit outward normal to I pointing into Q, v(x) > 0, o(x) > 0 are C*™
functions on T and 0 < c(x) € C§°(RY).
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The solution of (5) is given by V(t)f = ef®f, t > 0, where
V(t) is a contraction semi-group in H whose generator G = (g i) has a domain

D(G) which is the closure in the graph norm of functions (f1, f2) € Cg)(R") x Cg(R")
satisfying the boundary condition d,f; — v, — o(x)f; = 0 on I'. The spectrum of G in
Rez < 0 is formed by isolated eigenvalues with finite multiplicity. For simplicity in the
following we assume that ¢(x) = 0, 0(x) = 0. Notice that if Gf = Af with

f=(f,f)#0and 0, —yHL =0o0nT, we get

(A - M) =0inQ,
0,fi —Ayfp =0onT.

Moreover, u(t,x) = V(t)f = eMf(x),Re X < 0, is a solution of (5) with
exponentially decreasing global energy. Such solutions are called asymptotically
disappearing and they perturb the scattering. On the other hand, a solution V/(t)f is
called disappearing if there exists T > 0 such that V/(t)f =0 for Vt > T.
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I. It was proved (Colombini, -P. Rauch, (2014)) that if we have a least one eigenvalue
A of G with Re A < 0, then the wave operators W, are not complete, that is

Ran W_ = Ran W, and we cannot define the scattering operator S by S = WJ:I oW_.
Idea of the proof.

Introduce the spaces
Hy ={feM: V(t)f 5 0ast — +oo}, H. ={f €M : V*(t)f - 0ast — +oc}.

First one proves that Ran W, = H © H.. The equality Ran W_ = Ran W, yields
Hy = H_. If f is an eigenfunction with eigenvalue A\, Re A < 0, clearly f € H..
Second, we show that f € H_ implies that V/(t)f is disappearing which is impossible.
Thus f ¢ H_. We may define S by using another evolution operator.
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Il. For problems associated to unitary groups (the global energy is conserved in time)
the associated scattering operator S(z) : L2(S771) — [2(S?1) satisfies

SYz)=S*(2), z € C,

if S(z) is invertible at z. This implies that S(z) is invertible for Imz > 0, since 5(z)
and §*(z) are analytic for Im z < 0. For dissipative boundary problems the above
relation is not true and S(zg) may have a non trivial kernel for some zp,Im zg > 0. In
this case Lax and Phillips proved that izy is an eigenvalue of G.

It is easy to see that if we have one disappearing solution, then the space
Hr={feHH: V(t)f=0,t>T}

has infinite dimension. On the other hand, Majda (1975) established that if K and
~v(x) are analytic, then in the case y(x) # 1, Vx € I, there are
no disappearing solutions. We consider two cases:

(A): 0<y(x)<1l,Vxerl, (B): y(x) >1, VxeT.



2.Results
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Proposition 1 (-P. (2016), (2021))
Let K = B3 = {x € R®: |x| < 1} and suppose that v = const. Then

(1) v = 1. There are no eigenvalues of G in C.

(2) v > 1. All eigenvalues of G are real, we have an infinite number of eigenvalues of

G and
1

-1

(3) 0 <y < 1. The eigenvalues of G are not real, we have an infinite number

op(G) C (—00, =

eigenvalues of G and

0,(G) C{A€C: |Re)| <2(1—7)[ImA?, ReX < 0}.

We see that when v ™\, 1 and v 1 one obtains very large regions without
eigenvalues. The result (1) has been anounced by Majda (1975) without proof.




Eigenvalues free regions

Theorem 1 (-P. (2016))
In the case (A) for every €, 0 < € < 1, the eigenvalues of G lie in the region

Ac={N€C: |Re)| < C(|ImA2Fe +1), Re) < O}.

In the case (B) for every €, 0 < € < 1, and every M € N the eigenvalues of G lie in
the region \¢ U Ry, where

Ry = {|ImX < Cy(1+ |ReA])™, Re < 0}

For strictly convex obstacles K we improve the above result in the case (B).

Theorem 2 (-P. (2016))

Assume K strictly convex. In the case (B) for every M € N the eigenvalues of G lie in
the region Ry U {|A] < R,Re\ < 0}.
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By applying the results of Vodev (2017) for the Dirichlet-to-Neumann map, it is
possible to improve the above result replacing the region A, by a strip

M={AeC: —Ry <ReA <0}, Ry >0.

Thus for strictly convex obstacles the eigenvalue free regions correspond to the case of

a ball.

Previous results have been proved by Majda (1976). He proved that in the case (A)
the eigenvalues lie in

Ei ={\eC: |Re)| < G (|ImA**+1), Re) < 0},
while in the case (B) he showed that the eigenvalues lie in E; U Ep, where

E;={\eC: |Im)| < G(|ReA|*? +1),Re < 0}.
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Figure 1: Eigenvalues for 0 < y(x) < 1
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Figure 2: Eigenvalues for vy(x) > 1
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Figure 3: Improved region of eigenvalues for y(x) > 1

12/33



Weyl asymptotic for the eigenvalues in the case (B)
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Introduce the set

A={NeC: |ImA < G(1+]|Re))72, ReA < —G < —1}, % < 1, containing
Rm, VM > 2 modulo compact set. Given X € 0,(G), we define the algebraic
multiplicity of A by

1
It (\) = tr =—— —-G)ld
mult (A) = tr o |Zf/\|:c(z ) “dz

with 0 < e < 1 sufficiently small.
Theorem 3 (-P. (2021))

Assume y(x) > 1 for all x € . Then the counting function of the eigenvalues in \
taken with their multiplicities has the asymptotic

H{Aj€op(G)NA: [N <, r>C}

O B _ _
- (27Td)d£1 (/I_(’72(X) - 1)(d 1)/2d5><> rih + Ov(rd %), r — oo,

wq_1 being the volume of the unit ball {x € R9~!: |x| < 1}.
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For strictly convex obstacles we obtain the asymptotic of all eigenvalues. The constant
C, depend on ~y. When minycr v(x) 1, one has C, — +o0. This is justified by the

proof of Theorem 3 and by the example for the ball Bs.

The behavior of the eigenvalues in the case 0 < y(x) < 1 is an open problem. In this
case the continuation of the exterior Dirichlet-to-Neumann operator N'(\) defined
below across the imaginary axis plays an important role. We conjecture that for strictly

convex obstacles one has the asymptotic
HAj€op(G)N{AeC: =Ry <ReA <O, [N|<r, r>C}

B Q?Tll ( /r<1 — 72028 )+ 092, oo )




3. Dirichlet-to-Neumann map and trace formula

For Re A < 0 introduce the exterior Dirichlet-to-Neumann map
N : H(T) 3 f — d,u|r € H*X(IN),
where u is the solution of the problem

(—A+X)u=0inQ, ue H3(Q),
u="fonl, (5)
u : (i\) — outgoing.

A function u(x) is (iX)-outgoing if there exists R > po and g € L2, (R?) such that
u(x) = (Do + ) 'g, x| = R,

where Ry()\) = (—Ag + A\?) ! is the outgoing resolvent of the free Laplacian —Ag in
R9 which is analytic in C for d odd and on the logarithmic covering of C for d even.
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The operator A/()\) can be expressed by the cut-off resolvent y(—Ap + A2)~1x of the
Dirichlet Laplacian Ap, hence N'()) is analytic in {\: Re X < 0}. The boundary
condition for an eigenfunction g becomes

CNfF=NNFf—-MFf=0, f=glr.

The operator V() : H=1/2() — HY2(I") is compact and invertible in {z: Re A < 0}
since there are no resonances of the Neumann problem in {z : Rez < 0}. We write

C(A\) = (Id — MNA)THN ().

and by Fredholm theorem one deduces that C(A\)~! is meromorphic in {\ : Re A < 0}.
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Trace formula
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Proposition 2

Let o C {\ € C: Re\ < 0} be a closed positively oriented curve without self
intersections. Assume that C(\)~! has no poles on o . Then

1
tI'H %/()\ G) d)\—trHl/2 r) o I/C ) 1 ()\)d)\ (6)

Since G has only point spectrum in Re A < 0, the left hand term in (6) is equal to the
number of the eigenvalues of G in the domain w bounded by a counted with their
algebraic multiplicities. Setting C(\) = ()‘) — 7y, we write the right hand side of (6) as

e [ G2 yan )

27
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Set A = —%, 0 < Reh < 1 and consider the problem

(—h?A +1)u=0inQ,
—hd,u—~yu=0o0nT, (8)
u — outgoing.

We introduce the operator C(h) :== —hN(—h~1) — 7 and using (7), the trace formula
(6) becomes
1 1 ~ C e~
tr — [ (A= G) tdA=tr-— [ C(h)"'C(h)dh
t5 [(0-6) 57 [ €A EChdh, 9)
where C denote the derivative with respect to h and & is the curve
d={zeC:z=- weal
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Recall that A ={A € C: [ImA| < G(|ReA| + 1)™2, ReA< —G < —1}. For A€ A
one has |Im A| <1 and this implies h € L, where

L:={heC: |Imh| < Gl|h* |h < C*, Reh > 0}. (10)

We write the points in L as h = h(1 +in) with 0 < h < hg < C;'1, n € R, || < 2.
Therefore the problem (8) becomes

(—h?A — z)u=0in Q,
—(1+in)hdyu —yu=0onT, (11)

u — outgoing.

with z = —m = —1+5s(n), |s(n)| < (2+ h?)h? < 3h%.



Semi-classical parametrix

Given f € H*(T), consider the problem
{(—h2A —Z)u=0inK,

12
u="fonT. (12)

Let z € Z1UZ, U Z3 and A = i¥Z, where
Z1 ={Rez=1,0<|Imz| <1}, Zi(6) = Zy N {|Im z| > h’},
Zy={Rez=-1,0<|Imz| <1}, Z3={|Rez| <1,|Imz| =1}.

Figure 4: Contours Z1(9), Z>, Z3

Z3

2>
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Let o denote the trace on I'. Consider the problem (12) for z € Z;1(1/2 — ) U Zp U Z3
with 0 < € < 1 and define the semi-classical interior Dirichlet-to-Neumann map

Nine(2, h) : Hi(F) 3 £ — —inohd,u € Hy ().

Here H}(I") is the semi-classical Sobolev space with norm [[(hD)*u||;2ry. G. Vodev
(2015) constructed for domains with arbitrary geometry a semi-classsical parametrix
for (7) as a FIO with complex phase ¢(x,¢’; z) in a small neighborhood of the
boundary I'. Close to the boundary introduce geodesic normal coordinates (x’, x4) in a
neighborhood of a point xp € ' with x4 = 0 on I'(we take x4 = dist(x,[")). The eikonal
equation and the transport equations can be solved only modulo O(X(',V), VN > 1.
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Set x = (X, x4), & = (€/,€4). We say that a(x’,&’; h) € SE(T) if the following
conditions are satisfied:

10/20,a(x, &'; h)| < Cogh2UelTIBN (k=181 v, w3,

where (¢/) = (1 + [¢/]2)}/2. For a € S¥(I'), we consider the operator

(0ph(a)f) (x) = (2mh) =+ / / &Y )5 s WYF(y)dyde.

We have a calculus for the h—pseudo-differential operators with symbols in 5§ if

0 < § < 1/2. The semiclassical symbol of —h?AA becomes &3 + r(x, &) + hq(x)&q and
r(x',0,£") = ro(x’, ') is the principal symbol of the Laplace-Beltrami operator —h?Alr
onl.
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For z € Z1 U Zo U Z3, let

(X' €, 2) =z —r(x',&) e C®(T*()), Imp > 0

be the root of the equation p? + rp(x’,¢’) — z = 0. It is easy to see that p € 511/2_6, if
ze Z1(1/2—¢€), p € 5&, if ze€ Z,U Zs.

Proposition 3 (Vodev, (2015))

Given 0 < € < 1, there exists 0 < hyg(e) < 1 such that for z € Z1(1/2 — €) and

0 < h < ho(e) we have

Ch
IV (2, h) — Opn(p + hb) |l 2(r)— Hr(r) < \/=7 (13)

| Im z|

where C > 0 is independent of h,z,e and b € 58 does not depend on z, h. Moreover,
for z € Z, U Z3 the above estimate holds with |Im z| replaced by 1.




Exterior Dirichlet-to-Neumann map

For our analysis we need to apply the exterior Dlrichlet-to-Neumann map

Naxt(z, h) : H{(T) 3 f — —inohd,u € H~Y(T),

where u is the outgoing solution of the problem

(—h?A - 2)u=0inQ =R\ K, ur =f.

The operator Next(z, h) is a meromorphic function related to the cut-off outgoing
resolvent x(h?>Gp — z)~1x with poles in the half-plane {Im z < 0}. A result completely
analogous to (13) was proved by -P. (2016). For strictly convex obstacles K and

Rez ~ 1, |Im z| < coh?/? Sjbstrand (2014) obtained results similar to Prop. 3. The
case hl/2—¢ <Imz< cohz/3 for strictly convex obstacles has been covered by -P.
(2016) by a semi-classical parametrix construction inspired by that of Vodev.
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4. ldea of the proof of Theorem 3

We use a parametrix T(z, h) for Next(z, h) = N(z, h) for z = —1 + s(n), |s(n)| < h?
such that

IN(z, B)f = T(z, D)fllm(ry < Conmh™* || F[l 2(r), YN € N, (14)
Notice that N (—1, h) is self-adjoint. Introduce the self-adjoint operator
P(h) := T(=1,h) —v(x"), 0 < h < ho.
The semiclassical principal symbol of P(h) is
p1(x, &) = —iv/—1—rg—y(x') = V1 + rog — y(x). Since min, y(x) > 1, this
symbol vanishes when
n(x,&)=~+*x)-1>0.

We will treat P(h) as a classical pdo with symbol

L Pro(x, &) = 7(x) + Po(h), Po(h) € S°.

25/33



26/33

We apply the approach of Sjostrand-Vodev (1997) concerning the asymptotic of
Rayleigh resonances close to the real axis. Let

Ml(h) < ,u2(h) <. < Mm(h) <...

be the eigenvalues of P(h) counted with their multilipcities. The points 0 < hx < hg,
where i (hx) = 0 correspond to points for which P(h) is not invertible. For large fixed
ko, depending on hg, the eigenvalues px(ho) are positive, whenever k > kg. Thus if
pr(r~t) <0, k> ko and r > hgl, we have i, (hy) = 0 for some r=! < hy < ho.
However, a more precise analysis of the behaviour of px(h) and the relation of hy to
eigenvalues \; € L of G is necessary. Thus the problem is reduced to a Weyl
asymptotic of the counting function of the negative eigenvalues of

P(r=1), r> C, = (ho(v)) ! given by the well known formula

rdfl //
—_— dx'de’ + O, (r?72). 15
(2m)d-1 r(x! &)<y (x") -1 . i ) (15)
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1. Examine d/;%h) and d“k(h) and prove that the zero hy of uk(h) is unique.

2. Study the continuation P(h) for h = h(1 + i), |n| < h? and show that
1,7 1
IP™Y() || g pst1y < Csm; n # 0. (16)
3. Establish a trace formula

1 - dP(h) -
tI‘H1/2(|—) 27_(_/ P_l(h) ( )dh
o

with suitable curve 7 , counting the number of hy in a domain bounded by 7 .

4. Show that the trace formulas for C(h) and P(h) over 7y, differ by a negligible term
Om(hP), Vp € N. Thus we obtain a map ¢ : h, — ((hx) = A\ between the set of
points hi €]0, ho] and the eigenvalues A\ € L.



Idea for the Step 1

. We

denote by (.,.) the scalar product in L?(T") and for two self adjoint operators Ly, Ly the
inequality Ly > Lp means (Lyu, u) > (Lau, u), Yu € L2(T).

Set minycr v(x) = co > 1, maxyer 7(x) = ¢1 > ¢ and choose a constant C =

Q4

Proposition 4

Let (hA) = (1 — h?>Ar)Y? and let ¢ = C(co — 1)? < 2. Then for h sufficiently small we

have
hag—i) + CP(h)(hA)~Y2P(R) > ¢ (1 - 9h) (hA) (17)

with a constant C> > 0 independent of h and e.

The values of ¢ depends on (co — 1)? and € \, 0 when ¢y \, 1. Also 0<h< & sohg
and hy €0, ho] must have order o(e). Hence we need to take r > i~ @ n (15)
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Hk(h)

l/r “‘(/ h (W]

Figure 5: eigenvalue pk(h) for 1/r < h < h,



30/33

Let h; be small and let uy(hy) have multiplicity m. For h close to h; one has exactly
m eigenvalues and we denote by F(h) the space spanned by them. We can find a small
interval (o, B) around pk(h1), independent on h, containing the eigenvalues spanning
F(h). Given hy > hy close to hy, consider a normalised eigenfunction e(h2) with
eigenvalue pik(h2). Denote by dot the derivative with respect to h. Let m(h) = E(, g)
be the spectral projection of P(h), hence F(h) = m(h)L?(). Then (m(h) — I)w(h) =0
yields 7(h)7(h)m(h) = 0 and 7(h)|Fn) = 0. We construct a smooth extension

e(h) = w(h)e(h2) € F(h), h € [hy, ho] of e(h2) with ||e(h)|| = 1, é(h) € F(h)*.
Obviously, e(h1) will be normalised eigenfunction with eigenvalue ju,(h1). One obtains

hP(h) = h*A(hD)™t 4 hLy = P(h) — (hD)~ + hL;

with zero order operators Ly, L1 and this implies
|(P(h)e(h),e(h))| < Coh™!, h € [h1, hy]. Therefore

h2 d ‘h2 1 CO
i (ho) — k()| = ‘/ (h), e(h))dh‘ < Co/ htdh < 22(h — ).
hy h

1



Assuming pux(h) € [—0,0] for h € [hi, ho], we deduce that p,(h) is
locally Lipschitz function in h and its almost defined derivative satisfies \h‘?“k | < Go.

To estimate hauakiish) from below, we exploit Proposition 4. For h < hy < ﬁ with
C1 = Gy/e we have
aﬂk( )

o = (hP(h)e(h), e(h))

> (1 — Gih)((hD)e(h), e(h)) — C({hD)~*P(h)e(h), P(h)e(h))
3e
4’

> e(1— Cih)— C6° >

= (co— 1)\/% — Cihg > (2f) Consequently, for h € [hy, ho] one

3e ha _ 3e
i) — () > 5 / hldh > 2% (b — )
h1 2

has

and we obtain 3¢ < h%,gm < G.
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We fix cg = 3¢ and hg > 0. Let p > d be fixed and let
hpt1
Ik7p:{h€R: ‘h—hk‘ < T}
0

Then for h €]0, ho] \ Ikp one has |ux(h)| > hP. Thus for h €]0, ho] \ (UkaO Ik,p> one

obtains
IP(h) 22 = O(h™P). (18)

On the other hand, >\~ |l pl = O(hP+2=9). We can construct disjoint intervals Ji ,

so that the estimate (18) holds for h €]0, ho] \ (Ukao Jk’p> with |Jx p| = O(hPF279).
We choose a curve 7, , C C bounded by four segments

Reh e 0Jk p, Im h = + Re hPHL.
Next we extend the estimate (18) to

1P(R) |22 = O((Re h)™P), b € i (19)



THANK YOU !
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