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INTRODUCTION

Model of sound propagation in a fluid. In the following equation
• r a scalar, is the fluctuation of pressure at (x , t) around a fixed
pressure p0.
• u valued in Rd is the particle velocity at (x , t).

ut +∇r + bu = 0, in Ω× R+,

rt + div u = 0, in Ω× R+,

u · n = 0, on Γ× R+,

u(0, x) = u0(x), r(0, x) = r0(x), x ∈ Ω,

Ω smooth domain in Rd .
b is a nonnegative function, b is called the damping.
We assume b(x) ≥ b0 > 0 in ω ⊂ Ω.
Energy is defined by E (t) = 1

2

(
‖u(t)‖2 + ‖r(t)‖2

)
.

THE GOAL IS TO PROVE THAT ENERGY DECAY TO 0.
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FUNCTIONAL CONTEXT
L2
m(Ω) = {f ∈ L2(Ω) :

∫
Ω f (x) dx = 0}.

Let H = (L2(Ω))d × L2
m(Ω),

We introduce the operators

A =

(
0 ∇
div 0

)
D(A) =

{
(u, r) ∈ H, (∇r , div u) ∈ H, u · n|Γ = 0

}
B =

(√
b
0

)
B∗ =

(√
b 0

)
For u ∈ (L2(Ω))d with div u ∈ L2(Ω), u · n|Γ make sens in H−1/2(Γ)
The problem may be recasted in the form:{
Zt(t) +AZ (t) + BB∗Z (t) = 0, t > 0,
Z (0) = Z 0,

or

{
Zt(t) = AdZ (t), t > 0,
Z (0) = Z 0,

where Z = (u, r),
Ad = −A− BB∗ with D(Ad) = D(A).
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ENERGY

Introducing the following energy,

E (t) =
1
2
‖(u(t), r(t))‖2H , ∀ t ≥ 0,

we have

E (0)− E (t) =

∫ t

0

∥∥∥√b u(s)
∥∥∥2

(L2(Ω))d
ds, for all t ≥ 0.

Energy is not increasing.

Our goal is to study the decay.

This kind of problem is studied in this last years and is related with
the associated stationary problem.
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DECAY AND RELATED PROBLEM
We have several results relating decay and resolvent. We assume
the two conditions on semigroup.

1) ∃M > 0, ‖etAd‖L(H) ≤ M, for t ≥ 0,
2) Ad + iµI , is invertible for any µ ∈ R,

Stabilisation exponential is implied by the following properties
(Gearhart-Huang-Prüss theorem)

‖(Ad + iµI )−1‖L(H) ≤ M ⇔ ‖etAd‖L(H) ≤ Ce−δt .

‖(Ad + iµ)−1‖L(H) ≤ CeC |µ| ⇔ ‖etAdZ‖ ≤
C ′‖Z‖D(A)

log(3 + t)
.

‖(Ad + iµ)−1‖L(H) ≤ C (1 + |µ|)α ⇔ ‖etAdZ‖ ≤
C ′‖Z‖D(A)

(1 + t)1/α .

Two last results was obtained by several authors, Burq,
Batty-Duyckaerts, Borichev-Tomilov...
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SOME OBSERVATIONS I
Considering the system {

ut +∇r = 0,
rt + div u = 0,

We have rtt −∆r = 0.

That system is related with a wave equation.

Now the damped system{
ut +∇r + bu = 0,
rt + div u = 0,

means rtt −∆r − div(bu) = 0.

It seems difficult to exploit the link between an acoustic system and
a wave equation.
Other observation, the functional spaces are not the same.
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SOME OBSERVATIONS II

The stationary system is the following{
−∇r + iµu − bu = f ,

− div u + iµr = h,

where (f , h) ∈ H. In particular if µ = 0 and (f , h) = (0, 0), we
have non trivial solutions to{

−∇r − bu = 0,
div u = 0,

In particular r = 0, u = 0 on support of b and div u = 0.

It is easy to find solutions to div u = 0, for instance
uj(x) = φ′(x1)gj(x2, . . . , xd) for j = 2, . . . , d and
u1(x) = −φ(x1)

∑d
j=2 ∂xjgj(x2, . . . , xd).
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RESULT FORMULATION
Due to the large kernel, we work on the following functional space
H0 = ker[Ad ]⊥.
If (r , u) ∈ H we can write (r , u) = (r0, u0) + (r1, u1) where
(r0, u0) ∈ ker[Ad ]⊥ and (r1, u1) ∈ kerAd .

With these setting, we have etAd (r , u) = (r1, u1) + etAd (r0, u0).

The goal is to prove the following result.

There exists C > 0 such that

E (t) ≤
C‖Z‖2D(A)

log2(3 + t)
,

where Z = (r0, u0), ‖Z‖D(A) = ‖Z‖+ ‖AZ‖, and
E (t) = 1

2‖e
tAd (r0, u0)‖2H .

Observe that only for µ = 0 we have the problem that Ad is not
invertible. For µ 6= 0, we can work on H.
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ESTIMATION ON SUPPORT OF b
Let (f , h) ∈ H we have to estimate (u, r) solutions of{

−∇r + iµu − bu = f

− div u + iµr = h

Taking the inner product, the first equation by u and the second by
r , we have

− (∇r |u) + iµ‖u‖2 − ‖
√
bu‖2 = (f |u)

− (r | div u)− iµ‖r‖2 = (r |h)

As (r | div u) = (−∇r |u) with boundary condition u · n = 0.
Summing we have

iµ
(
‖u‖2 − ‖r‖2

)
− ‖
√
bu‖2 = (f |u)− (r |h).

Real part yields ∫
ω
|u|2 .

(
‖f ‖+ ‖h‖

)(
‖u‖+ ‖r‖

)
,

where b ≥ δ > 0 on ω.
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HOW TO CONCLUDE
Assuming we have an estimate of the following form

‖u‖2 + ‖r‖2 . eCµ
(
‖f ‖2 + ‖h‖2 +

∫
ω
|u|2).

With the estimate of the previous slide∫
ω
|u|2 .

(
‖f ‖+ ‖h‖

)(
‖u‖+ ‖r‖

)
,

we obtain

‖u‖2 + ‖r‖2 . eCµ
(
‖f ‖2 + ‖h‖2 +

(
‖f ‖+ ‖h‖

)(
‖u‖+ ‖r‖

))
.

Yielding

‖u‖2 + ‖r‖2 ≤ C ′eC
′µ
(
‖f ‖2 + ‖h‖2

)
+

1
2
(
‖u‖2 + ‖r‖2

)
.
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INTERIOR ESTIMATE I{
−∇r + iµu − bu = f ,

− div u + iµr = h.

Taking the divergence of the first equation we have

−∆r + iµ div u − div(bu) = div f ,

then
−∆r − µ2r = div f + iµh + div(bu).

One problem is div f as f is only in L2(Ω).
We use Carleman estimate proved for instance by Imanuvilov-Puel

−∆v − µ2v = G + div F .

τ3‖eτϕv‖2 + τ‖eτϕ∇v‖2 ≤ Cτ2 (‖eτϕG‖2 + ‖eτϕF‖2
)
.

for all v ∈ C∞c (K ) which satisfies τ ≥ τ∗ and µ satisfying
c0τ ≤ |µ| ≤ c ′0τ .
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INTERIOR ESTIMATE II
Assuming r and u compactly supported in Ω and satisfying{

−∇r + iµu − bu = f ,

− div u + iµr = h.

We have
−∆r − µ2r = div f + iµh + div(bu).

Applying previous Carleman estimate to r , we obtain this estimate

τ3‖eτϕr‖2+τ‖eτϕ∇r‖2 ≤ Cτ2 (|µ|2‖eτϕh‖2 + ‖eτϕf ‖2 + ‖eτϕu‖2
)
.

First equation in system yields iµu = ∇r + bu + f .
From that we can estimate u

τ |µ|2‖eτϕu‖2 ≤ Cτ2 (|µ|2‖eτϕh‖2 + ‖eτϕf ‖2 + ‖eτϕu‖2
)
.

We can absorb the u term of the right to obtain

τ3‖eτϕr‖2 + τ‖eτϕ∇r‖2 + τ |µ|2‖eτϕu‖2

≤ Cτ2 (|µ|2‖eτϕh‖2 + ‖eτϕf ‖2
)
.

12



DIFFICULTY FOR BOUNDARY ESTIMATE

We can gluing local Carleman estimate to obtain global Carleman
estimate.

Maybe we can follow the approach applied for interior estimate but
there is a difficulty.

The boundary condition is imposed on u. On r by equation
−∇r + iµu − bu = f , we have −∂nr|∂Ω = (f · n)|∂Ω.

As f ∈ L2(Ω), it is not clear that (f · n)|∂Ω make sense.

To avoid this difficulty we work directly on the system.
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PROBLEM IN RIEMANNIAN GEOMETRY
To obtain Carleman estimate at boundary, it is convenient to
change variables such that, locally, the boundary is given by xd = 0.

Thus we have to follow how equation change under the change of
variables. To do that it is convenient to recast the problem in
Riemannian geometry.

In this context, we consider u as a vector field, it is a contravariant
tensor and the system take the form,{

−∇g r + iµu − bu = f ,

− divg u + iµr = h.

This system is the same as above if g = Id .
By Riemannian geometry we follow each terms obtained by change
of variables. And g take the form

g =

(
(gij)1≤i ,j≤d−1 0

0 1

)
=

(
g̃ 0
0 1

)
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CONJUGATED SYSTEM

From 
−∇g r + iµu = f in xd > 0,
− divg u + iµr = h in xd > 0,
ud = 0 on xd = 0,

let v = eτϕu and w = eτϕr . We have

∇g r = e−τϕ
(
∇gw − τw∇gϕ

)
,

divg u = e−τϕ
(
divg v − τg(∇gϕ, v)

)
.

−i∇g̃w + iτw∇g̃ϕ− µṽ = i F̃ in xd > 0,
−i∂xdw + iτw∂xdϕ− µvd = iF d in xd > 0,
−i divg v + iτ g̃(∇g̃ϕ, ṽ) + iτvd∂xdϕ− µw = iG in xd > 0,
vd = 0 on xd = 0.

We have divg v = ∂xd v
d + divg̃ ṽ .
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REDUCED SYSTEM
Here we consider the system on vd and w .

Dxdw + iτw∂xdϕ− µvd = iF d in xd > 0,
Dxd v

d + µ−1OpT(δ)OpT(ζ ′)w − µw + iτvd∂xdϕ− ihvd = G̃

vd = 0 on xd = 0,

where G̃ = iG + iµ−1OpT(δ)F̃ ,
OpT(δ) := −i divg̃ +iτ g̃(∇g̃ϕ, ·),
OpT(ζ ′) = −i∇g̃ + iτ∇g̃ϕ,
Let U = (w , vd), the system has the form

DxdU − BU = H, where H = (iF d , iG + µ−1OpT(δ)F̃ ),

and B is a tangential matrix operators with principal symbol

b =

(
−iτ∂xdϕ µ

−µ−1q(x , ξ′) + µ −iτ∂xdϕ

)
,

q(x , ξ′) =
∑

1≤i ,j≤d−1

g ij(x)
(
ξi + iτ∂xiϕ(x)

)(
ξj + iτ∂xjϕ(x)

)
.
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IDEAS TO ESTIMATES U

Ideas to obtain estimates on U, solution of DxdU − BU = H.
Assume we have a left eigenvector ` to b, i.e. `b = λ`.
We compose the system by OpT`, modulo error terms we have

Dxd (OpT(`)U)−OpT(λ)(OpT(`)U) = OpT(`)H.

We have three cases.
1) Imλ < 0, one obtains an elliptic interior estimate and

one estimates the trace by H

2) Imλ > 0, one obtains an elliptic interior estimate by
the trace and H

3) Imλ = 0, one obtains an interior estimate with 1/2
lost of derivative by the trace and H, typic for
Carleman estimates.

To do that we have some constraints, λ and ` should be smooth, for
instance λ simple. We need enough left eigenvectors to estimate U.
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ALGEBRAIC RESULTS ON b

Characteristic polynomial of

b =

(
−iτ∂xdϕ µ

−µ−1q(x , ξ′) + µ −iτ∂xdϕ

)
,

is given by P(λ) = (λ+ iτ∂xdϕ)2 + q − µ2.

Let α be such that α2 = q − µ2 with Reα ≥ 0.

The roots of P are −iτ∂xdϕ± iα.

If α = 0 the previous analysis does not work and we have to treat
this case by an other method.

If α 6= 0, roots are simple and we have to study sign of the
imaginary part of roots. One has

Im(−iτ∂xdϕ± iα) = −τ∂xdϕ± Reα
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SIGN OF IMAGINARY PART OF ROOTS
Now we assume ∂xdϕ > 0 at the boundary. From

Im(−iτ∂xdϕ± iα) = −τ∂xdϕ± Reα

1) If |Reα| < |τ∂xdϕ|, both roots have negative
imaginary parts.

2) If |Reα| > |τ∂xdϕ|, one root has a negative imaginary
part and the other a positive imaginary part.

3) |Reα| = |τ∂xdϕ|, one root is real and the other has a
negative imaginary part.

To obtain a convenient condition we apply the following result.

Denoting s = t2 where t, s ∈ C we have for r0 > 0,

|Re t| S r0 ⇐⇒ 4r2
0 Re s − 4r4

0 + (Im s)2 S 0.

Taking r0 = |τ∂xdϕ| and s = q − µ2, we obtain a condition on q.
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DIAGONALIZED SYSTEM
Summary, the symbolic matrix is

b =

(
−iτ∂xdϕ µ

−µ−1q(x , ξ′) + µ −iτ∂xdϕ

)
,

The eigenvalues are −iτ∂xdϕ± iα,

The associated eigenvectors are
(
∓iα µ

)
.

We have always Im(−iτ∂xdϕ− iα) < 0 (remember Reα ≥ 0.)

We define (in fact we need some microlocal cut-off)

zj = (−1)j iΛ−1
T,τOpT(α)w + µΛ−1

T,τv
d ,

where Λ−1
T,τ = OpT((τ2 + |ξ′|2)−2).

On boundary xd = 0, we have z1 + z2 = 0 as vd = 0.

Dxd zj + OpT

(
iτ∂xdϕ+ (−1)j iα

)
zj = Hj ,

where Hj collects calculus error terms and force terms.
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ESTIMATES ON DIAGONALIZED SYSTEM
For equation

Dxd zj + OpT

(
iτ∂xdϕ+ (−1)j iα

)
zj = Hj ,

if j = 2 as Im(−iτ∂xdϕ− iα) < 0, we have an interior elliptic
estimate without condition on trace. We obtain, modulo error terms

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1

T,τ z2‖+ . ‖Λs
T,τH2‖+,

for all s ∈ R.

For j = 1, the estimate depends on sign of Im(−iτ∂xdϕ+ iα).
If Im(−iτ∂xdϕ+ iα) > 0, we have, modulo errors terms

‖Λs+1
T,τ z1‖+ . ‖Λs

T,τH1‖+ + |Λs+1/2
T,τ (z1)|xd=0|,

In this case both estimates yield

|Λs+1/2
T,τ (z2)|xd=0|+‖Λs+1

T,τ z1‖++‖Λs+1
T,τ z2‖+ . ‖Λs

T,τH1‖++‖Λs
T,τH2‖+
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ESTIMATES IN CARLEMAN CASE

If Im(−iτ∂xdϕ+ iα) = 0, we have, modulo errors terms

‖ Λ
s+1/2
T,τ z1‖+ . ‖ Λs

T,τH1‖+ + |Λs+1/2
T,τ (z1)|xd=0|.

With the previous estimate obtained on z2

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1

T,τ z2‖+ . ‖Λs
T,τH2‖+.

Both estimates yield

|Λs+1/2
T,τ (z2)|xd=0|+‖ Λ

s+1/2
T,τ z1‖++‖Λs+1

T,τ z2‖+ . ‖Λs
T,τH2‖++‖ Λs

T,τH1‖+.
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DOUBLE ROOTS
In cases where −iτ∂xdϕ+ iα = 0 or equivalently q − µ2 = 0.

Dxdw + iτ(∂xdϕ)w − µvd = H1 in xd > 0,
Dxd v

d + µ−1OpT(q − µ2)w + iτ(∂xdϕ)vd = H2 in xd > 0,
vd = 0 on xd = 0.

We can hope obtain first an interior elliptic estimate as both roots
have negative imaginary part, and second, control of traces.

In a neighborhood of a point such that q − µ2 = 0, we have
|ξ′| ∼ |µ| ∼ τ .

The we can hope treat the term µ−1OpT(q − µ2)w by perturbation
as µ−1(q − µ2) is small with respect τ .

With these reductions b take the form

b =

(
iτ∂xdϕ −µ

0 iτ∂xdϕ

)
.
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ESTIMATES IN DOUBLE ROOT CASES
We obtain the model system{

Dxdw + iτ(∂xdϕ)w − µvd = H1 in xd > 0,
Dxd v

d + iτ(∂xdϕ)vd = H2 in xd > 0,

We can estimate vd by the second equation as in previous cases as
Im−iτ(∂xdϕ) < 0. Then we have

‖Λs+1
T,τ v

d‖+ . ‖Λs
T,τH2‖+

To estimate w we use the first equation with the term µvd at the
right hand side. We obtain

‖Λs+1
T,τ w‖+ . ‖Λs

T,τH1‖+ + µ‖Λs
T,τv

d‖+.

This yields

‖Λs+1
T,τ w‖+ + ‖Λs+1

T,τ v
d‖+ . ‖Λs

T,τH1‖+‖Λs
T,τH2‖+.
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ESTIMATES ON STATE VARIABLES
Finally the weak estimate is the one obtained by Carleman method,
when one root is real.

|Λs+1/2
T,τ (z2)|xd=0|+τ−1/2‖ Λs+1

T,τ z1‖++‖Λs+1
T,τ z2‖+ . ‖Λs

T,τH2‖++‖ Λs
T,τH1‖+.

As

z1 = −iΛ−1
T,τOpT(α)w + µΛ−1

T,τv
d ,

z2 = iΛ−1
T,τOpT(α)w + µΛ−1

T,τv
d ,

We obtain on w and vd ,

|Λs+1/2
T,τ (w)|xd=0|+ τ−1/2‖ Λs+1

T,τ w‖+ + τ1/2‖Λs
T,τv

d‖+

. ‖Λs
T,τF‖+ + ‖ Λs

T,τG‖+.

On original variables, we have

τ1/2|eτϕr|xd=0|+τ1/2‖eτϕu‖+ +τ1/2‖eτϕr‖+ +τ−1/2‖eτϕ∇g r‖+

≤ C
(
‖eτϕf ‖+ + ‖eτϕg‖+

)
.
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