On a $\partial, \overline{\partial}$ system with a large parameter

Johannes Sjöstrand IMB, Université de Bourgogne

Joint works with C. Klein and N. Stoilov Resonances, inverse problems and seismic waves, University of Reims, Nov. 16–19, 2021

1. Introduction

We will discuss some asymptotic questions for the $\partial, \overline{\partial}$ problem of Dirac type, on $\mathbf{C} \simeq \mathbf{R}^2$:

$$\begin{cases} \overline{\partial}\phi_1 = \frac{q}{2}e^{\overline{kz} - kz}\phi_2, \\ \partial\phi_2 = \sigma \frac{\overline{q}}{2}e^{kz - \overline{kz}}\phi_1, \end{cases}$$
(1)

$$\phi_1(z) = 1 + o(1), \ \phi_2(z) = o(1), \ |z| \to \infty.$$
 (2)

Here $k \in \mathbf{C}$ and q is a potential which is small near infinity,

$$\partial = \partial_z = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right), \ z = x + iy.$$

 $\sigma = +1$ (defocusing case) or -1 (focusing case). Our asymptotic results will be valid in both cases and from now on we take $\sigma = 1$. Notice that $|e^{kz-\overline{kz}}| = 1$, so the exponential factors in (1) are oscillatory. Assuming (1), (2) to have a unique solution, we have the reflection coefficient R = R(k), defined by

$$\bar{R}(k) = \frac{2}{\pi} \int_{\mathbf{C}} e^{kz - \bar{k}\bar{z}} \bar{q}(z) \phi_1(z;k) L(dz), \quad k \in \mathbf{C},$$
(3)

where $L(dz) \simeq (1/2i)\overline{dz} \wedge dz$ is the Lebesgue measure on **C**. The map $q \mapsto R$ is called the scattering transform.

The inverse scattering transform is then given by (1) and (2) after replacing q by R and vice versa, the derivatives with respect to z by the corresponding derivatives with respect to k, and asymptotic conditions for $k \to \infty$ instead of $z \to \infty$. The system (1), (2) appears in the study of the Davey Stuartson II equations

$$iq_t + (q_{xx} - q_{yy}) + 2(\Phi + |q|^2)q = 0,$$

$$\Phi_{xx} + \Phi_{yy} + 2(|q|^2)_{xx} = 0,$$
(4)

and also in electrical impedance tomography.

As q in (4) evolves in time t, the reflection coefficient evolves by a trivial phase factor:

$$R(k;t) = R(k,0)e^{4it\Re(k^2)}.$$
(5)

The general structure, existence and uniqueness have been established by [Fo83, AbFo83, AbFo84, BeCo85, Su94a, Su94b, BrUh97, Br01, Pe16, NaReTa17]. Here we focus on the asymptotic behaviour when $|k| \rightarrow \infty$.

Numerical calculations can be carried out in a bounded region in the k-plane and it is then of interest to have asymptotic results for large k.

Plan of the talk:

- The $\overline{\partial}$ operator with polynomial weights; Carleman–Hörmander approach.
- The convergence of a perturbation series solution when $|k| \to \infty$, provided $q \in \langle \cdot \rangle^{-2} H^{s}(\mathbf{C})$, $1 < s \leq 2$, or $q = 1_{\Omega}$ where $\Omega \Subset \mathbf{C}$ is strictly convex, $\partial \Omega \in C^{\infty}$
- The leading asymptotics of ϕ_1 , ϕ_2 when $q = 1_{\Omega}$ as above with $\partial \Omega$ smooth.
- Asymptotics of R(k) when $q = 1_{\Omega}$.
- Some numerical illustrations.

2. $\overline{\partial}$ on **C** with polynomial weights.

This is very classical (Carleman–Hörmander, method of positive commutators).

Proposition

Let $\epsilon > 0$. For every $v \in \langle \cdot \rangle^{\epsilon-2}L^2$, there exists $u \in \langle \cdot \rangle^{\epsilon}L^2$ such that

 $\overline{\partial} u = v \text{ and } \|\langle \cdot \rangle^{-\epsilon} u\| \leq \epsilon^{-1/2} \|\langle \cdot \rangle^{2-\epsilon} v\|.$

Proposition

When $0 < \epsilon \leq 1$ the solution is unique and given by

$$u(z)=\frac{1}{\pi}\int\frac{v(w)}{z-w}L(dw).$$

Roughly, forgetting about the polynomial weights, we can say that

$$(h\overline{\partial})^{-1} = \mathcal{O}(1/h) : L^2 \to L^2$$

Here $0 < h \ll 1$. This improves to $\mathcal{O}(1)$ after a suitable microlocalization to the elliptic region, $|(\xi, \eta)| \ge 1/\mathcal{O}(1)$. 3. Application to the $\partial, \overline{\partial}$ system

Let $q \in \langle \cdot \rangle^{-2} H^{s}(\mathbb{C})$, $1 < s \leq 2$. Let $k \in \mathbb{C}$ with $|k| \gg 1$ and write

$$kz - \overline{kz} = rac{i}{h} \Re(z\overline{\omega}), \ h = rac{1}{|k|}, \ \omega = 2irac{\overline{k}}{|k|}.$$

Writing $\hat{\tau}_{\omega} u = e^{kz - kz} u$ (translation by ω on the *h* Fourier transform side), the system (1) becomes

$$\begin{cases} h\overline{\partial}\phi_1 - \hat{\tau}_{-\omega}h_2^{\underline{q}}\phi_2 = 0, \\ h\partial\phi_2 - \hat{\tau}_{\omega}h_2^{\underline{q}}\phi_1 = 0 \end{cases}$$
(6)

イロン 不得 とうほう イロン 二日

8/34

Let $E = (h\overline{\partial})^{-1}$, $F = (h\partial)^{-1}$,

$$\mathcal{K} := \begin{pmatrix} 0 & E\hat{\tau}_{-\omega}\frac{hq}{2}, \\ F\hat{\tau}_{\omega}\frac{h\bar{q}}{2} & 0 \end{pmatrix} =: \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}.$$
(7)

Applying E and F to the two equations in (6) leads to the equivalent system

$$(1-\mathcal{K})\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix},\tag{8}$$

Trying $\phi_1^0 = 1$, $\phi_2^0 = 0$, gives an error to correct. We need to solve an inhomogeneous system.

We see that $\mathcal{K} = \mathcal{O}(1) : (\langle \cdot \rangle^{\epsilon} L^2)^2 \to (\langle \cdot \rangle^{\epsilon} L^2)^2$. However $\mathcal{K}^2 = \begin{pmatrix} AB & 0 \\ 0 & BA \end{pmatrix}$ is much smaller, cf. Lemma 3.2 in [Pe16]:

Proposition

 $\mathcal{K}^2 = \mathcal{O}(h^{s-1}): \ (\langle \cdot \rangle^{\epsilon} L^2)^2 \to (\langle \cdot \rangle^{\epsilon} L^2)^2.$

It follows that $1 - \mathcal{K}$ is bijective with inverse

$$(1-\mathcal{K}^2)^{-1}(1+\mathcal{K}) = \begin{pmatrix} (1-AB)^{-1} & 0\\ 0 & (1-BA)^{-1} \end{pmatrix} \begin{pmatrix} 1 & A\\ B & 1 \end{pmatrix}.$$

Idea of the proof.

$$\mathcal{K}^{2} = \begin{pmatrix} AB & 0\\ 0 & BA \end{pmatrix},$$
$$AB = \frac{h^{2}}{4} E \widehat{\tau}_{-\omega} q F \widehat{\tau}_{\omega} \overline{q}.$$

<ロト < 回 > < 目 > < 目 > < 目 > 目 の へ () 10 / 34 Phase space localizations. Thanks to $\hat{\tau}_{\pm\omega}$, we are always in a region where $E = \mathcal{O}(1)$ or $F = \mathcal{O}(1)$.

Proposition

When $q = 1_{\Omega}$ for $\Omega \subseteq \mathbf{C}$ strictly convex with smooth boundary, the conclusion of the preceding proposition holds with s = 2.

(This is a recent improvement of the value s = 3/2.)

Returning to (6), we write

$$\phi_j = \phi_j^0 + \phi_j^1, \quad (\phi_1^0, \phi_2^0) = (1, 0) \tag{9}$$

and get

$$(1-\mathcal{K}) \begin{pmatrix} \phi_1^1 \\ \phi_2^1 \end{pmatrix} = \begin{pmatrix} 0 \\ B(1) \end{pmatrix} = \mathcal{O}(1) \text{ in } \langle \cdot
angle^{\epsilon} L^2,$$

leading to

Theorem

(6) has the solution (9), where

 $\phi_1^1 = (1 - AB)^{-1} AB(1), \tag{10}$

$$\phi_2^1 = (1 - BA)^{-1}B(1).$$
 (11)

NB: $\phi_1 = (1 - AB)^{-1}(1)$, $\phi_2 = \phi_2^1$.

4. The leading correction term when $q = 1_{\Omega}$.

Let $q = 1_{\Omega}$ be as in the last proposition and let us study the leading term in (11):

$$B(1) = F\widehat{\tau}_{\omega}\frac{h\overline{q}}{2}(z) = \frac{1}{2\pi} \int_{\Omega} \frac{1}{\overline{z} - \overline{w}} e^{kw - \overline{kw}} L(dw) =: \frac{1}{2\pi} \overline{f(z,k)}, \quad (12)$$

B: $A(1) = f(z,k)/(2\pi)$

$$f(z,k) = \int_{\Omega} \frac{1}{z-w} e^{\overline{kw}-kw} L(dw) = \iint_{\Omega} \frac{e^{\overline{kw}-kw}}{z-w} \frac{d\overline{w} \wedge dw}{2i}.$$
 (13)

Stokes' formula (integration by parts) leads to

Ν

$$f(z,k) = \frac{1}{2i\overline{k}} \int_{\partial\Omega} \frac{1}{z-w} e^{\overline{kw}-kw} dw + (\pi/\overline{k}) e^{\overline{kz}-kz} \mathbb{1}_{\Omega}(z)$$
(14)

<ロ><回><一><一><一><一><一><一</td>13/34

Assume first also that

$\partial \Omega$ is real analytic.

Parametrize: $t \mapsto \gamma(t) \in \partial\Omega$, $|\dot{\gamma}(t)| = 1$ with the positive orientation. Let ν be the interior unit normal to $\partial\Omega$, and let

- $w_+ = w_+(k) \in \partial \Omega$ be the North pole where $\nu = c\omega$, c < 0,
- w_{-} be the South pole where $\nu = c\omega$, c > 0.
- Let Γ₊ be the open boundary segment from the South pole to the North pole and Γ₋ the one from the North to the South.

 w_{\pm} are the critical points of $kw - \overline{kw}$ as a function on $\partial\Omega$.

(15)

Let $iu(w, \kappa)$ be a holomorphic extension of $kw - \overline{kw}$ to neigh $(\partial\Omega, \mathbb{C})$. Applying the method of steepest descent, we replace $\partial\Omega$ in the integral in (14) by a contour Γ , obtained by pushing Γ_+ inwards and Γ_- outwards:

Define

$$F(z) = F_{\Gamma}(z) = \int_{\Gamma} \frac{1}{z - w} e^{-iu(w,k)} dw.$$
(16)

From (14) and the residue theorem, we get for $f = 2\pi A(1)$

$$f(z,k) = \frac{1}{2i\overline{k}}F(z) + (\pi/\overline{k})\left(e^{-iu(z,k)}(1_{\Omega_{-}}(z) - 1_{\Omega_{+}}(z)) + e^{-i|k|\Re(z\overline{\omega})}1_{\Omega}(z)\right).$$
(17)

When z is not too close to w_+ and w_- , we can apply stationary phase – steepest descent¹, to see that F is equal to

$$F(z) = \sqrt{2\pi} \left(\frac{1}{z - w_{+}(k)} e^{-iu(w_{+}(k),k) - i\pi/4} \frac{\dot{\gamma}(t_{+}(k))}{|\partial_{t}^{2}u(t_{+}(k))|^{1/2}} + \frac{1}{z - w_{-}(k)} e^{-iu(w_{-}(k),k) + i\pi/4} \frac{\dot{\gamma}(t_{-}(k))}{|\partial_{t}^{2}u(t_{-}(k))|^{1/2}} \right) + \mathcal{O}(\langle z \rangle^{-1} k^{-3/2}).$$
(18)

¹making a further deformation of Γ in order to avoid the pole at $w \equiv z_r$ if necessary, $\sim \frac{16/34}{r}$

When z is close to w_+ or to w_- we need to replace the corresponding term in (18) by an expression in terms of the special function

$$G(\widetilde{z}) = \int_{\widetilde{\Gamma}} \frac{1}{\widetilde{z} - \widetilde{w}} e^{-\widetilde{w}^2/2} d\widetilde{w}.$$
 (19)

Combining this with (10), (11), leads to the following approximations for ϕ_2^1 , ϕ_1^1 , where h = 1/|k|:

$$\phi_2^1 = \frac{1}{2k} e^{i|k|\Re(\cdot\overline{\omega})} \mathbb{1}_{\Omega} + \mathcal{O}(1)h^{3/2} (\ln(1/h))^{1/2} \text{ in } \langle \cdot \rangle^{\epsilon} L^2, \qquad (20)$$

$$\phi_1^1 = \frac{h}{4k} E(1_{\Omega}) + \mathcal{O}(1) h^{3/2} (\ln(1/h))^{1/2} \text{ in } \langle \cdot \rangle^{\epsilon} L^2.$$
 (21)

When $\partial\Omega$ is merely smooth, this still works with u(w, k) equal to an almost holomorphic extension of u_0 to neigh $(\partial\Omega, \mathbf{C})$.

5. Asymptotics of the reflection coefficient

These results are still preliminary. Let $\mathcal{O} \subseteq \mathbf{C}$ be open, strictly convex with real-analytic boundary. Let $q = 1_{\Omega}$ and take $\sigma = 1$ for simplicity. Let

$$D_{\Omega}(z) = \frac{1}{\pi} \int_{\Omega} \frac{1}{z - w} L(dw)$$
(22)

be the solution to the $\overline{\partial}$ -problem:

$$\begin{cases} \partial_{\overline{z}} D_{\Omega} = 1_{\Omega}, \\ D_{\Omega}(z) \to 0, \ z \to \infty. \end{cases}$$
(23)

Example

$$\mathcal{D}_{\mathcal{D}(0,1)}(z) = egin{cases} ar{z}, \ |z| \leq 1, \ 1/z, \ |z| \geq 1. \end{cases}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (C) 18/34

Theorem

 D_{Ω} is continuous, $D_{\Omega|_{\Omega}} \in C^{\infty}(\overline{\Omega})$, $D_{\Omega|_{\mathbf{C}\setminus\overline{\Omega}}} \in C^{\infty}(\mathbf{C}\setminus\Omega)$. Then

$$\overline{R} = \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} L(dz) + \frac{1}{4i\pi |k|^2} \left(-\int_{\widetilde{\Gamma}} D_{\Omega}(w) e^{iu(w,k)} dw + \overline{\int_{\Gamma} D_{\Omega}(w) e^{-iu(w,k)} dw} \right)$$
(24)
+ $\mathcal{O}(|k|^{-3} \ln |k|),$

When $\Omega = D(0,1)$ is the unit disc, numerical computations indicate that

$$R \approx R_{\text{asym}} := \frac{1}{\sqrt{\pi k^3}} \left(\sin(2k - \pi/4) - \frac{5}{16k} \cos(2k - \pi/4) \right), \ k \to +\infty,.$$
(25)
and that $R - R_{\text{asym}} = \mathcal{O}(|k|^{-7/2}).$

19 / 34

Need to study AB where A, B are given in (7),

$$Au(z) = \frac{1}{2\pi} \int_{\Omega} \frac{1}{z-w} e^{-kw + \overline{kw}} u(w) L(\mathrm{d}w),$$

$$Bu(z) = \frac{1}{2\pi} \int_{\Omega} \frac{1}{\overline{z} - \overline{w}} e^{kw - \overline{kw}} u(w) L(\mathrm{d}w),$$

$$ABu(z) = \int_{\Omega} K(z, w)u(w)L(\mathrm{d}w), \qquad (26)$$

$$K(z,w) = \frac{1}{4\pi^2} \iint_{\Omega} \frac{e^{\overline{k\zeta}}}{(z-\zeta)} \frac{e^{-k\zeta}}{(\overline{\zeta}-\overline{w})} \frac{\mathrm{d}\overline{\zeta} \wedge \mathrm{d}\zeta}{2\mathrm{i}} e^{kw-\overline{kw}}, \qquad (27)$$

 By partitions and integration by parts, we split K into several terms that can be estimated and get,

Theorem

$$AB = \mathcal{O}(1/|k|) : \begin{cases} L^q \to L^q, & 2 < q < +\infty, \\ L^q \to \langle \cdot \rangle^{\epsilon} L^q, & 1 < q \le 2, \ \epsilon > \frac{2}{q} - 1. \end{cases}$$
(28)

In particular, $AB = \mathcal{O}(1/|k|) : L^2(\Omega) \to L^2(\Omega)$.

Combining (3), (10) gives

$$\overline{R}(k) = \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} (1 - AB)^{-1} (1) L(dz)$$

$$= \sum_{\nu=0}^{\infty} \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} (AB)^{\nu} (1) L(dz)$$
(29)

Define r = r(z, k) by

$$A(1_{\Omega}) = \frac{1}{2\overline{k}} e^{-kz + \overline{kz}} 1_{\Omega} + r(z, k), \qquad (30)$$

Comparing with (17), (16), we get

$$r = \frac{F}{4\pi i \overline{k}} - \frac{1}{2\overline{k}} e^{-iu} \mathbb{1}_{\Omega_+} \text{ in } \Omega.$$
(31)

We then get (cf (20)),

$$r(\cdot,k) = \mathcal{O}(1)|k|^{-3/2} (\ln|k|)^{1/2} \text{ in } L^2(\Omega),$$
(32)

$$r = \frac{F}{4\pi i \overline{k}} + \frac{\mathcal{O}(1) \ln |k|}{|k|^2} = \mathcal{O}(1)|k|^{-3/2} \text{ in } L^1(\Omega),$$
(33)
where $F = F(z, k)$.

22 / 34

Let $\langle u|v \rangle = \int uvL(dz)$ and write $A = A_k$. Then the transpose of A_k is given by $A_k^t = -e^{-k \cdot +\overline{k} \cdot}A_{-k}e^{-k \cdot +\overline{k} \cdot}$

$$\begin{split} \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega})(z) L(dz) &= \frac{2}{\pi} \langle B(1_{\Omega}) | A^{\mathrm{t}} e^{k \cdot - \overline{k} \cdot} (1_{\Omega}) \rangle \\ &= -\frac{2}{\pi} \langle B_k(1_{\Omega}) | e^{-k \cdot + \overline{k} \cdot} A_{-k}(1_{\Omega}) \rangle. \end{split}$$

Using (30) and the fact that $B_k(1_{\Omega}) = \overline{A_k(1_{\Omega})}$, we get

$$\frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega})(z) L(dz)$$

$$= \frac{2}{\pi} \frac{1}{4|k|^2} \int_{\Omega} e^{kz - \overline{kz}} L(dz) - \frac{2}{\pi} \int_{\Omega} \frac{1}{2k} r(z, -k) L(dz) \qquad (34)$$

$$+ \frac{2}{\pi} \int_{\Omega} \overline{r(z, k)} \frac{1}{2\overline{k}} L(dz) - \frac{2}{\pi} \int_{\Omega} e^{-kz + \overline{kz}} \overline{r(z, k)} r(z, -k) L(dz).$$

The 1st term in the right hand side is $\mathcal{O}(|k|^{-7/2})$. By (32) the last term is $\mathcal{O}(|k|^{-3} \ln |k|)$. Thus,

$$\frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega})(z) L(dz)$$

$$= -\frac{2}{\pi} \int_{\Omega} \frac{1}{2k} r(z, -k) L(dz) + \frac{2}{\pi} \int_{\Omega} \overline{r(z, k)} \frac{1}{2\overline{k}} L(dz) + \mathcal{O}(|k|^{-3} \ln |k|).$$
(35)

(33) now gives

$$\frac{2}{\pi}\int_{\Omega}e^{kz-\overline{kz}}AB(1_{\Omega})(z)L(dz)=\mathcal{O}(|k|^{-5/2}).$$
(36)

イロン イボン イヨン トヨ

24 / 34

We shall next gain a power of k in the estimate of the general term in (29) for $\nu \ge 2$:

$$\frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} (AB)^{\nu} (1_{\Omega})(z) L(dz) = \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} A(BA)^{\nu - 1} B(1_{\Omega})(z) L(dz)$$
$$= \frac{2}{\pi} \langle (BA)^{\nu - 1} B(1_{\Omega}) | e^{-k \cdot + \overline{k} \cdot} A_{-k}(1_{\Omega}) \rangle = \mathcal{O}(1) |k|^{1 - \nu} |k|^{-1} |k|^{-1}$$
$$= \mathcal{O}(|k|^{-\nu - 1}) = \mathcal{O}(|k|^{-3}), \quad (37)$$

since $(BA)^{\nu-1} = \mathcal{O}(|k|^{1-\nu}) : L^2(\Omega) \to L^2(\Omega)$ and $B(1_{\Omega}), A_{-k}(1_{\Omega}) = \mathcal{O}(1/|k|)$ in $L^2(\Omega)$. Using this in (29), we get

$$\overline{R} = \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} L(dz) + \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega}) L(dz) + \mathcal{O}(|k|^{-3}), \quad (38)$$

and in particular,

$$\overline{R} = \frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} L(dz) + \mathcal{O}(|k|^{-5/2}).$$
(39)

25 / 34

We next study the second term in the right hand side of (38), starting from (35). Using (32), (33) in (35), we get

$$\frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega})(z) L(dz) = \frac{2}{\pi} \int_{\Omega} \frac{1}{2k} \frac{F(z, -k)}{4i\pi \overline{k}} L(dz) + \frac{2}{\pi} \int_{\Omega} \frac{\overline{F}(z, k)}{-4i\pi k} \frac{1}{2\overline{k}} L(dz) + \mathcal{O}(|k|^{-3} \ln |k|) = \frac{1}{4i\pi^{2}|k|^{2}} \int_{\Omega} (F(z, -k) - \overline{F}(z, k)) L(dz) + \mathcal{O}(|k|^{-3} \ln |k|).$$
(40)

Here

$$\int_{\Omega} F(z,-k)L(dz) = \int_{\Omega} \int_{\widetilde{\Gamma}} \frac{1}{z-w} e^{iu(w,k)} dw L(dz)$$
$$= \int_{\widetilde{\Gamma}} \int_{\Omega} \frac{1}{z-w} L(dz) e^{iu(w,k)} dw = -\pi \int_{\widetilde{\Gamma}} D_{\Omega}(w) e^{iu(w,k)} dw, \quad (41)$$

using that $\frac{1}{z-w}e^{iu(w,k)}$ is integrable on $\Omega \times \widetilde{\Gamma}$ for the measure $L(dz)[dw]_{Q_{O(Q_{C})}}$

Similarly,

$$-\int_{\Omega} \overline{F(z,k)} L(dz) = \overline{\int_{\Omega} \int_{\Gamma} \frac{1}{w-z} e^{-iu(w,k)} dw L(dz)}$$
$$= \overline{\int_{\Gamma} \int_{\Omega} \frac{1}{w-z} L(dz) e^{-iu(w,k)} dw} = \pi \overline{\int_{\Gamma} D_{\Omega}(w) e^{-iu(w,k)} dw}.$$
(42)

Using (41), (42) in (40), we get

$$\frac{2}{\pi} \int_{\Omega} e^{kz - \overline{kz}} AB(1_{\Omega})(z)L(dz) = \frac{1}{4i\pi |k|^2} \left(-\int_{\widetilde{\Gamma}} D_{\Omega}(w)e^{iu(w,k)}dw + \overline{\int_{\Gamma} D_{\Omega}(w)e^{-iu(w,k)}dw} \right) + \mathcal{O}(|k|^{-3}\ln |k|)$$
(43)

イロン イロン イヨン イヨン 三日

27 / 34

Using this in (38) gives (24).

6. Numerics

Figure: The solution ϕ_2 for the characteristic function of the disk multiplied by k for k = 10, 100, 1000 from left to right.

Figure: Difference between the solution ϕ_2 for the characteristic function of the disk and $\overline{f}/(2\pi)$ for k = 10, 100, 1000 from left to right.

Figure: Difference between the solution ϕ_1 for the characteristic function of the disk and $1 + \frac{\overline{z}}{4k}$ multiplied by k^2 for k = 10, 100, 1000 from left to right.

Figure: Reflection coefficient for the characteristic function of the disk, on the left R in blue and R_{asym} from (25) in red, both multiplied with $k^{3/2}$, on the right the difference between both multiplied with $k^{7/2}$.

References I

- M.J. Ablowitz, A.S. Fokas, On a Method of Solution for a Class of Multi-Dimensional Nonlinear Evolution Equations, Phys. Rev. Lett. 51, 7-10 (1983)
- M.J. Ablowitz, A.S. Fokas, On the inverse scattering transform of multidimensional nonlinear evolution equations related to first order systems in the plane, J. Math Phys. 25 no 8 (1984), 2494-2505.
- R.M. Brown, Estimates for the scattering map associated with a two-dimensional first-order system. J. Nonlinear Sci. 11, no. 6, 459-471 (2001)
- R.M. Brown, G.A. Uhlmann, Communications in partial differential equations 22 (5-6), 1009-1027 (1997)
- R. Beals and R. Coifman, Multidimensional inverse scattering and nonlinear PDE Proc. Symp. Pure Math. (Providence: American Mathematical Society) 43, 45-70 (1985)

References II

- A.S. Fokas, On the Inverse Scattering of First Order Systems in the Plane Related to Nonlinear Multidimensional Equations, Phys. Rev. Lett. 51, 3-6 (1983)
- C. Klein, J. Sjöstrand, N. Stoilov, Large |k| behavior of complex geometric optics solutions to d-bar problems, https://arxiv.org/abs/2009.06909
- C. Klein, J. Sjöstrand, N. Stoilov, *Large* |k| *behavior of d-bar problems for domains with a smooth boundary* https://arxiv.org/abs/2010.04423
- P. Perry, Global well-posedness and long-time asymptotics for the defocussing Davey–Stewartson II equation in H^{1,1}(ℂ), J. Spectr. Theory 6 (2016), no. 3, 429–481.
- - A. Nachman, I. Regev, D. Tataru, *A nonlinear Plancherel theorem with applications to ...*, arXiv:1708.04759.

L.Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. I, J. Math. Anal. Appl. 183 (1) (1994), 121-154.

References III

L.Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. II, J. Math. Anal. Appl. 183 (2) (1994), 289-325.