On a $\partial, \bar{\partial}$ system with a large parameter

Johannes Sjöstrand
IMB, Université de Bourgogne

Joint works with C. Klein and N. Stoilov
Resonances, inverse problems and seismic waves,
University of Reims, Nov. 16-19, 2021

1. Introduction

We will discuss some asymptotic questions for the $\partial, \bar{\partial}$ problem of Dirac type, on $\mathbf{C} \simeq \mathbf{R}^{2}$:

$$
\begin{gather*}
\left\{\begin{array}{l}
\bar{\partial} \phi_{1}=\frac{q}{2} e^{\overline{k z}-k z} \phi_{2}, \\
\partial \phi_{2}=\sigma \frac{\bar{q}}{2} e^{k z-\overline{k z}} \phi_{1},
\end{array}\right. \tag{1}\\
\phi_{1}(z)=1+o(1), \phi_{2}(z)=o(1),|z| \rightarrow \infty . \tag{2}
\end{gather*}
$$

Here $k \in \mathbf{C}$ and q is a potential which is small near infinity,

$$
\partial=\partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{1}{i} \frac{\partial}{\partial_{y}}\right), z=x+i y .
$$

$\sigma=+1$ (defocusing case) or -1 (focusing case). Our asymptotic results will be valid in both cases and from now on we take $\sigma=1$.
Notice that $\left|e^{k z-\overline{k z}}\right|=1$, so the exponential factors in (1) are oscillatory.

Assuming (1), (2) to have a unique solution, we have the reflection coefficient $R=R(k)$, defined by

$$
\begin{equation*}
\bar{R}(k)=\frac{2}{\pi} \int_{\mathbf{C}} \mathrm{e}^{k z-\bar{k} \bar{z}} \bar{q}(z) \phi_{1}(z ; k) L(d z), \quad k \in \mathbf{C} \tag{3}
\end{equation*}
$$

where $L(d z) \simeq(1 / 2 i) \overline{d z} \wedge d z$ is the Lebesgue measure on \mathbf{C}.
The map $q \mapsto R$ is called the scattering transform.
The inverse scattering transform is then given by (1) and (2) after replacing q by R and vice versa, the derivatives with respect to z by the corresponding derivatives with respect to k, and asymptotic conditions for $k \rightarrow \infty$ instead of $z \rightarrow \infty$.

The system (1), (2) appears in the study of the Davey Stuartson II equations

$$
\begin{array}{r}
i q_{t}+\left(q_{x x}-q_{y y}\right)+2\left(\Phi+|q|^{2}\right) q=0 \\
\Phi_{x x}+\Phi_{y y}+2\left(|q|^{2}\right)_{x x}=0 \tag{4}
\end{array}
$$

and also in electrical impedance tomography.
As q in (4) evolves in time t, the reflection coefficient evolves by a trivial phase factor:

$$
\begin{equation*}
R(k ; t)=R(k, 0) e^{4 i t \Re\left(k^{2}\right)} \tag{5}
\end{equation*}
$$

The general structure, existence and uniqueness have been established by [Fo83, AbFo83, AbFo84, BeCo85, Su94a, Su94b, BrUh97, Br01, Pe16, $\mathrm{NaReTa17]}$. Here we focus on the asymptotic behaviour when $|k| \rightarrow \infty$.

Numerical calculations can be carried out in a bounded region in the k-plane and it is then of interest to have asymptotic results for large k.

Plan of the talk:

- The $\bar{\partial}$ operator with polynomial weights; Carleman-Hörmander approach.
- The convergence of a perturbation series solution when $|k| \rightarrow \infty$, provided $q \in\langle\cdot\rangle^{-2} H^{s}(\mathbf{C}), 1<s \leq 2$, or $q=1_{\Omega}$ where $\Omega \Subset \mathbf{C}$ is strictly convex, $\partial \Omega \in C^{\infty}$
- The leading asymptotics of ϕ_{1}, ϕ_{2} when $q=1_{\Omega}$ as above with $\partial \Omega$ smooth.
- Asymptotics of $R(k)$ when $q=1_{\Omega}$.
- Some numerical illustrations.

2. $\bar{\partial}$ on \mathbf{C} with polynomial weights.

This is very classical (Carleman-Hörmander, method of positive commutators).

Proposition
Let $\epsilon>0$. For every $v \in\langle\cdot\rangle^{\epsilon-2} L^{2}$, there exists $u \in\langle\cdot\rangle^{\epsilon} L^{2}$ such that

$$
\bar{\partial} u=v \text { and }\left\|\langle\cdot\rangle^{-\epsilon} u\right\| \leq \epsilon^{-1 / 2}\left\|\langle\cdot\rangle^{2-\epsilon} v\right\| .
$$

Proposition
When $0<\epsilon \leq 1$ the solution is unique and given by

$$
u(z)=\frac{1}{\pi} \int \frac{v(w)}{z-w} L(d w)
$$

Roughly, forgetting about the polynomial weights, we can say that

$$
(h \bar{\partial})^{-1}=\mathcal{O}(1 / h): L^{2} \rightarrow L^{2}
$$

Here $0<h \ll 1$.
This improves to $\mathcal{O}(1)$ after a suitable microlocalization to the elliptic region, $|(\xi, \eta)| \geq 1 / \mathcal{O}(1)$.

3. Application to the $\partial, \bar{\partial}$ system

Let $q \in\langle\cdot\rangle^{-2} H^{s}(\mathbf{C}), 1<s \leq 2$. Let $k \in \mathbf{C}$ with $|k| \gg 1$ and write

$$
k z-\overline{k z}=\frac{i}{h} \Re(z \bar{\omega}), h=\frac{1}{|k|}, \omega=2 i \frac{\bar{k}}{|k|} .
$$

Writing $\widehat{\tau}_{\omega} u=e^{k z-\overline{k z}} u$ (translation by ω on the h Fourier transform side), the system (1) becomes

$$
\left\{\begin{array}{l}
h \bar{\partial} \phi_{1}-\widehat{\tau}_{-\omega} h \frac{q}{2} \phi_{2}=0, \tag{6}\\
h \partial \phi_{2}-\widehat{\tau}_{\omega} h \frac{\bar{q}}{2} \phi_{1}=0
\end{array}\right.
$$

Let $E=(h \bar{\partial})^{-1}, F=(h \partial)^{-1}$,

$$
\mathcal{K}:=\left(\begin{array}{cc}
0 & E \widehat{\tau}_{-\omega} \frac{h q}{2}, \tag{7}\\
F \widehat{\tau}_{\omega} \frac{h \bar{q}}{2} & 0
\end{array}\right)=:\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right) .
$$

Applying E and F to the two equations in (6) leads to the equivalent system

$$
\begin{equation*}
(1-\mathcal{K})\binom{\phi_{1}}{\phi_{2}}=\binom{0}{0} \tag{8}
\end{equation*}
$$

Trying $\phi_{1}^{0}=1, \phi_{2}^{0}=0$, gives an error to correct. We need to solve an inhomogeneous system.

We see that $\mathcal{K}=\mathcal{O}(1):\left(\langle\cdot\rangle^{\epsilon} L^{2}\right)^{2} \rightarrow\left(\langle\cdot\rangle^{\epsilon} L^{2}\right)^{2}$.
However $\mathcal{K}^{2}=\left(\begin{array}{cc}A B & 0 \\ 0 & B A\end{array}\right)$ is much smaller, cf. Lemma 3.2 in [Pe16]:
Proposition
$\mathcal{K}^{2}=\mathcal{O}\left(h^{s-1}\right):\left(\langle\cdot\rangle^{\epsilon} L^{2}\right)^{2} \rightarrow\left(\langle\cdot\rangle^{\epsilon} L^{2}\right)^{2}$.
It follows that $1-\mathcal{K}$ is bijective with inverse

$$
\left(1-\mathcal{K}^{2}\right)^{-1}(1+\mathcal{K})=\left(\begin{array}{cc}
(1-A B)^{-1} & 0 \\
0 & (1-B A)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & A \\
B & 1
\end{array}\right)
$$

Idea of the proof.

$$
\begin{aligned}
\mathcal{K}^{2} & =\left(\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right), \\
A B & =\frac{h^{2}}{4} E \widehat{\tau}_{-\omega} q F \widehat{\tau}_{\omega} \bar{q} .
\end{aligned}
$$

Phase space localizations. Thanks to $\widehat{\tau}_{ \pm \omega}$, we are always in a region where $E=\mathcal{O}(1)$ or $F=\mathcal{O}(1)$.

Proposition
When $q=1_{\Omega}$ for $\Omega \Subset \mathbf{C}$ strictly convex with smooth boundary, the conclusion of the preceding proposition holds with $s=2$.
(This is a recent improvement of the value $s=3 / 2$.)

Returning to (6), we write

$$
\begin{equation*}
\phi_{j}=\phi_{j}^{0}+\phi_{j}^{1}, \quad\left(\phi_{1}^{0}, \phi_{2}^{0}\right)=(1,0) \tag{9}
\end{equation*}
$$

and get

$$
(1-\mathcal{K})\binom{\phi_{1}^{1}}{\phi_{2}^{1}}=\binom{0}{B(1)}=\mathcal{O}(1) \text { in }\langle\cdot\rangle^{\epsilon} L^{2},
$$

leading to

Theorem

(6) has the solution (9), where

$$
\begin{gather*}
\phi_{1}^{1}=(1-A B)^{-1} A B(1), \tag{10}\\
\phi_{2}^{1}=(1-B A)^{-1} B(1) . \tag{11}
\end{gather*}
$$

$N B: \phi_{1}=(1-A B)^{-1}(1), \phi_{2}=\phi_{2}^{1}$.

4. The leading correction term when $q=1_{\Omega}$.

Let $q=1_{\Omega}$ be as in the last proposition and let us study the leading term in (11):

$$
\begin{equation*}
B(1)=F \widehat{\tau}_{\omega} \frac{h \bar{q}}{2}(z)=\frac{1}{2 \pi} \int_{\Omega} \frac{1}{\bar{z}-\bar{w}} e^{k w-\overline{k w}} L(d w)=: \frac{1}{2 \pi} \overline{f(z, k)}, \tag{12}
\end{equation*}
$$

NB: $A(1)=f(z, k) /(2 \pi)$

$$
\begin{equation*}
f(z, k)=\int_{\Omega} \frac{1}{z-w} e^{\overline{k w}-k w} L(d w)=\iint_{\Omega} \frac{e^{\overline{k w}-k w}}{z-w} \frac{d \bar{w} \wedge d w}{2 i} \tag{13}
\end{equation*}
$$

Stokes' formula (integration by parts) leads to

$$
\begin{equation*}
f(z, k)=\frac{1}{2 i \bar{k}} \int_{\partial \Omega} \frac{1}{z-w} e^{\overline{k w}-k w} d w+(\pi / \bar{k}) e^{\overline{k z}-k z} 1_{\Omega}(z) \tag{14}
\end{equation*}
$$

Assume first also that

$$
\begin{equation*}
\partial \Omega \text { is real analytic. } \tag{15}
\end{equation*}
$$

Parametrize: $t \mapsto \gamma(t) \in \partial \Omega,|\dot{\gamma}(t)|=1$ with the positive orientation. Let ν be the interior unit normal to $\partial \Omega$, and let

- $w_{+}=w_{+}(k) \in \partial \Omega$ be the North pole where $\nu=c \omega, c<0$,
- w_{-}be the South pole where $\nu=c \omega, c>0$.
- Let Γ_{+}be the open boundary segment from the South pole to the North pole and 「_ the one from the North to the South.
$w_{ \pm}$are the critical points of $k w-\overline{k w}$ as a function on $\partial \Omega$.

Let $i u(w, \kappa)$ be a holomorphic extension of $k w-\overline{k w}$ to neigh $(\partial \Omega, \mathbf{C})$.
Applying the method of steepest descent, we replace $\partial \Omega$ in the integral in (14) by a contour Γ, obtained by pushing Γ_{+}inwards and Γ_{-}outwards:

Define

$$
\begin{equation*}
F(z)=F_{\Gamma}(z)=\int_{\Gamma} \frac{1}{z-w} e^{-i u(w, k)} d w . \tag{16}
\end{equation*}
$$

From (14) and the residue theorem, we get for $f=2 \pi A(1)$)

$$
\begin{align*}
& f(z, k)= \\
& \frac{1}{2 i \bar{k}} F(z)+(\pi / \bar{k})\left(e^{-i u(z, k)}\left(1_{\Omega_{-}}(z)-1_{\Omega_{+}}(z)\right)+e^{-i|k| \Re(z \bar{\omega})} 1_{\Omega}(z)\right) . \tag{17}
\end{align*}
$$

When z is not too close to w_{+}and w_{-}, we can apply stationary phase steepest descent ${ }^{1}$, to see that F is equal to

$$
\begin{gather*}
F(z)=\sqrt{2 \pi}\left(\frac{1}{z-w_{+}(k)} e^{-i u\left(w_{+}(k), k\right)-i \pi / 4} \frac{\dot{\gamma}\left(t_{+}(k)\right)}{\left|\partial_{t}^{2} u\left(t_{+}(k)\right)\right|^{1 / 2}}\right. \\
\left.+\frac{1}{z-w_{-}(k)} e^{-i u\left(w_{-}(k), k\right)+i \pi / 4} \frac{\dot{\gamma}\left(t_{-}(k)\right)}{\left|\partial_{t}^{2} u\left(t_{-}(k)\right)\right|^{1 / 2}}\right) \tag{18}\\
+\mathcal{O}\left(\langle z\rangle^{-1} k^{-3 / 2}\right) .
\end{gather*}
$$

${ }^{1}$ making a further deformation of Γ in order to avoid the pole at $w \equiv z$, if necessary,

When z is close to w_{+}or to w_{-}we need to replace the corresponding term in (18) by an expression in terms of the special function

$$
\begin{equation*}
G(\widetilde{z})=\int_{\widetilde{\Gamma}} \frac{1}{\widetilde{z}-\widetilde{w}} e^{-\widetilde{w}^{2} / 2} d \widetilde{w} \tag{19}
\end{equation*}
$$

Combining this with (10), (11), leads to the following approximations for $\phi_{2}^{1}, \phi_{1}^{1}$, where $h=1 /|k|$:

$$
\begin{gather*}
\phi_{2}^{1}=\frac{1}{2 k} e^{i|k| \Re(\cdot \bar{\omega})} 1_{\Omega}+\mathcal{O}(1) h^{3 / 2}(\ln (1 / h))^{1 / 2} \text { in }\langle\cdot\rangle^{\epsilon} L^{2}, \tag{20}\\
\phi_{1}^{1}=\frac{h}{4 k} E\left(1_{\Omega}\right)+\mathcal{O}(1) h^{3 / 2}(\ln (1 / h))^{1 / 2} \text { in }\langle\cdot\rangle^{\epsilon} L^{2} . \tag{21}
\end{gather*}
$$

When $\partial \Omega$ is merely smooth, this still works with $u(w, k)$ equal to an almost holomorphic extension of u_{0} to neigh $(\partial \Omega, \mathbf{C})$.

5. Asymptotics of the reflection coefficient

These results are still preliminary. Let $\mathcal{O} \Subset \mathbf{C}$ be open, strictly convex with real-analytic boundary. Let $q=1_{\Omega}$ and take $\sigma=1$ for simplicity. Let

$$
\begin{equation*}
D_{\Omega}(z)=\frac{1}{\pi} \int_{\Omega} \frac{1}{z-w} L(d w) \tag{22}
\end{equation*}
$$

be the solution to the $\bar{\partial}$-problem:

$$
\left\{\begin{array}{l}
\partial_{z} D_{\Omega}=1_{\Omega} \tag{23}\\
D_{\Omega}(z) \rightarrow 0, z \rightarrow \infty
\end{array}\right.
$$

Example

$$
D_{D(0,1)}(z)=\left\{\begin{array}{l}
\bar{z},|z| \leq 1 \\
1 / z,|z| \geq 1
\end{array}\right.
$$

Theorem

D_{Ω} is continuous, $D_{\left.\Omega\right|_{\Omega}} \in C^{\infty}(\bar{\Omega}), D_{\Omega \mid} \mathbf{C} \backslash \bar{\Omega} \in C^{\infty}(\mathbf{C} \backslash \Omega)$. Then

$$
\begin{align*}
\bar{R}= & \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} L(d z) \\
& +\frac{1}{4 i \pi|k|^{2}}\left(-\int_{\tilde{\Gamma}} D_{\Omega}(w) e^{i u(w, k)} d w+\overline{\int_{\Gamma} D_{\Omega}(w) e^{-i u(w, k)} d w}\right) \tag{24}\\
& +\mathcal{O}\left(|k|^{-3} \ln |k|\right)
\end{align*}
$$

When $\Omega=D(0,1)$ is the unit disc, numerical computations indicate that

$$
\begin{equation*}
R \approx R_{\text {asym }}:=\frac{1}{\sqrt{\pi k^{3}}}\left(\sin (2 k-\pi / 4)-\frac{5}{16 k} \cos (2 k-\pi / 4)\right), k \rightarrow+\infty, \tag{25}
\end{equation*}
$$

and that $R-R_{\text {asym }}=\mathcal{O}\left(|k|^{-7 / 2}\right)$.

Need to study $A B$ where A, B are given in (7),

$$
\begin{gather*}
A u(z)=\frac{1}{2 \pi} \int_{\Omega} \frac{1}{z-w} e^{-k w+\overline{k w}} u(w) L(\mathrm{~d} w), \\
B u(z)=\frac{1}{2 \pi} \int_{\Omega} \frac{1}{\bar{z}-\bar{w}} e^{k w-\overline{k w}} u(w) L(\mathrm{~d} w), \\
A B u(z)=\int_{\Omega} K(z, w) u(w) L(\mathrm{~d} w), \tag{26}\\
K(z, w)=\frac{1}{4 \pi^{2}} \iint_{\Omega} \frac{e^{\overline{k \zeta}}}{(z-\zeta)} \frac{e^{-k \zeta}}{(\bar{\zeta}-\bar{w})} \frac{\mathrm{d} \bar{\zeta} \wedge \mathrm{~d} \zeta}{2 \mathrm{i}} e^{k w-\overline{k w}}, \tag{27}
\end{gather*}
$$

By partitions and integration by parts, we split K into several terms that can be estimated and get,

Theorem

$$
A B=\mathcal{O}(1 /|k|): \begin{cases}L^{q} \rightarrow L^{q}, & 2<q<+\infty, \tag{28}\\ L^{q} \rightarrow\langle\cdot\rangle^{\epsilon} L^{q}, & 1<q \leq 2, \epsilon>\frac{2}{q}-1 .\end{cases}
$$

In particular, $A B=\mathcal{O}(1 /|k|): L^{2}(\Omega) \rightarrow L^{2}(\Omega)$.
Combining (3), (10) gives

$$
\begin{align*}
\bar{R}(k) & =\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}}(1-A B)^{-1}(1) L(d z) \\
& =\sum_{\nu=0}^{\infty} \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}}(A B)^{\nu}(1) L(d z) \tag{29}
\end{align*}
$$

Define $r=r(z, k)$ by

$$
\begin{equation*}
A\left(1_{\Omega}\right)=\frac{1}{2 \bar{k}} e^{-k z+\overline{k z}} 1_{\Omega}+r(z, k), \tag{30}
\end{equation*}
$$

Comparing with (17), (16), we get

$$
\begin{equation*}
r=\frac{F}{4 \pi i \bar{k}}-\frac{1}{2 \bar{k}} e^{-i u} 1_{\Omega_{+}} \text {in } \Omega \tag{31}
\end{equation*}
$$

We then get (cf (20)),

$$
\begin{gather*}
r(\cdot, k)=\mathcal{O}(1)|k|^{-3 / 2}(\ln |k|)^{1 / 2} \text { in } L^{2}(\Omega) \tag{32}\\
r=\frac{F}{4 \pi i \bar{k}}+\frac{\mathcal{O}(1) \ln |k|}{|k|^{2}}=\mathcal{O}(1)|k|^{-3 / 2} \text { in } L^{1}(\Omega), \tag{33}
\end{gather*}
$$

where $F=F(z, k)$.

Let $\langle u \mid v\rangle=\int u v L(d z)$ and write $A=A_{k}$. Then the transpose of A_{k} is given by $A_{k}^{t}=-e^{-k \cdot+\bar{k} \cdot} A_{-k} e^{-k \cdot+\bar{k}}$.

$$
\begin{aligned}
\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z)=\frac{2}{\pi}\langle B(& \left.1_{\Omega}\right)\left|A^{t} e^{k \cdot-\overline{k \cdot}}\left(1_{\Omega}\right)\right\rangle \\
& =-\frac{2}{\pi}\left\langle B_{k}\left(1_{\Omega}\right) \mid e^{-k \cdot+\overline{k \cdot}} A_{-k}\left(1_{\Omega}\right)\right\rangle
\end{aligned}
$$

Using (30) and the fact that $B_{k}\left(1_{\Omega}\right)=\overline{A_{k}\left(1_{\Omega}\right)}$, we get

$$
\begin{align*}
& \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z) \\
& =\frac{2}{\pi} \frac{1}{4|k|^{2}} \int_{\Omega} e^{k z-\overline{k z}} L(d z)-\frac{2}{\pi} \int_{\Omega} \frac{1}{2 k} r(z,-k) L(d z) \tag{34}\\
& \quad+\frac{2}{\pi} \int_{\Omega} \overline{r(z, k)} \frac{1}{2 \bar{k}} L(d z)-\frac{2}{\pi} \int_{\Omega} e^{-k z+\overline{k z}} \overline{r(z, k)} r(z,-k) L(d z) .
\end{align*}
$$

The 1st term in the right hand side is $\mathcal{O}\left(|k|^{-7 / 2}\right)$. By (32) the last term is $\mathcal{O}\left(|k|^{-3} \ln |k|\right)$. Thus,

$$
\begin{align*}
& \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z) \\
& =-\frac{2}{\pi} \int_{\Omega} \frac{1}{2 k} r(z,-k) L(d z)+\frac{2}{\pi} \int_{\Omega} \overline{r(z, k)} \frac{1}{2 \bar{k}} L(d z)+\mathcal{O}\left(|k|^{-3} \ln |k|\right) \tag{35}
\end{align*}
$$

(33) now gives

$$
\begin{equation*}
\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z)=\mathcal{O}\left(|k|^{-5 / 2}\right) \tag{36}
\end{equation*}
$$

We shall next gain a power of k in the estimate of the general term in (29) for $\nu \geq 2$:

$$
\begin{gather*}
\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}}(A B)^{\nu}\left(1_{\Omega}\right)(z) L(d z)=\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A(B A)^{\nu-1} B\left(1_{\Omega}\right)(z) L(d z) \\
=\frac{2}{\pi}\left\langle(B A)^{\nu-1} B\left(1_{\Omega}\right) \mid e^{-k \cdot+\bar{k} \cdot} A_{-k}\left(1_{\Omega}\right)\right\rangle=\mathcal{O}(1)|k|^{1-\nu}|k|^{-1}|k|^{-1} \\
=\mathcal{O}\left(|k|^{-\nu-1}\right)=\mathcal{O}\left(|k|^{-3}\right) \tag{37}
\end{gather*}
$$

since $(B A)^{\nu-1}=\mathcal{O}\left(|k|^{1-\nu}\right): L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ and $B\left(1_{\Omega}\right), A_{-k}\left(1_{\Omega}\right)=\mathcal{O}(1 /|k|)$ in $L^{2}(\Omega)$.
Using this in (29), we get

$$
\begin{equation*}
\bar{R}=\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} L(d z)+\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right) L(d z)+\mathcal{O}\left(|k|^{-3}\right) \tag{38}
\end{equation*}
$$

and in particular,

$$
\begin{equation*}
\bar{R}=\frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} L(d z)+\mathcal{O}\left(|k|^{-5 / 2}\right) \tag{39}
\end{equation*}
$$

We next study the second term in the right hand side of (38), starting from (35). Using (32), (33) in (35), we get

$$
\begin{align*}
& \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z)= \\
& \frac{2}{\pi} \int_{\Omega} \frac{1}{2 k} \frac{F(z,-k)}{4 i \pi \bar{k}} L(d z)+\frac{2}{\pi} \int_{\Omega} \frac{\bar{F}(z, k)}{-4 i \pi k} \frac{1}{2 \bar{k}} L(d z)+\mathcal{O}\left(|k|^{-3} \ln |k|\right) \\
& \quad=\frac{1}{4 i \pi^{2}|k|^{2}} \int_{\Omega}(F(z,-k)-\bar{F}(z, k)) L(d z)+\mathcal{O}\left(|k|^{-3} \ln |k|\right) \tag{40}
\end{align*}
$$

Here

$$
\begin{align*}
& \int_{\Omega} F(z,-k) L(d z)=\int_{\Omega} \int_{\tilde{\Gamma}} \frac{1}{z-w} e^{i u(w, k)} d w L(d z) \\
&=\int_{\tilde{\Gamma}} \int_{\Omega} \frac{1}{z-w} L(d z) e^{i u(w, k)} d w=-\pi \int_{\tilde{\Gamma}} D_{\Omega}(w) e^{i u(w, k)} d w \tag{41}
\end{align*}
$$

using that $\frac{1}{z-w} e^{i u(w, k)}$ is integrable on $\Omega \times \widetilde{\Gamma}$ for the measure $L(d z)|d w|$.

Similarly,

$$
\begin{align*}
-\int_{\Omega} & \overline{F(z, k)} L(d z)=\overline{\int_{\Omega} \int_{\Gamma} \frac{1}{w-z} e^{-i u(w, k)} d w L(d z)} \\
& =\overline{\int_{\Gamma} \int_{\Omega} \frac{1}{w-z} L(d z) e^{-i u(w, k)} d w}=\pi \overline{\int_{\Gamma} D_{\Omega}(w) e^{-i u(w, k)} d w} \tag{42}
\end{align*}
$$

Using (41), (42) in (40), we get

$$
\begin{aligned}
& \frac{2}{\pi} \int_{\Omega} e^{k z-\overline{k z}} A B\left(1_{\Omega}\right)(z) L(d z)= \\
& \frac{1}{4 i \pi|k|^{2}}\left(-\int_{\widetilde{\Gamma}} D_{\Omega}(w) e^{i u(w, k)} d w+\overline{\int_{\Gamma} D_{\Omega}(w) e^{-i u(w, k)} d w}\right)+\mathcal{O}\left(|k|^{-3} \ln |k|\right)
\end{aligned}
$$

Using this in (38) gives (24).

6. Numerics

Figure: The solution ϕ_{2} for the characteristic function of the disk multiplied by k for $k=10,100,1000$ from left to right.

Figure: Difference between the solution ϕ_{2} for the characteristic function of the disk and $\bar{f} /(2 \pi)$ for $k=10,100,1000$ from left to right.

Figure: Difference between the solution ϕ_{1} for the characteristic function of the disk and $1+\frac{\bar{z}}{4 k}$ multiplied by k^{2} for $k=10,100,1000$ from left to right.

Figure: Reflection coefficient for the characteristic function of the disk, on the left R in blue and $R_{\text {asym }}$ from (25) in red, both multiplied with $k^{3 / 2}$, on the right the difference between both multiplied with $k^{7 / 2}$.

References I

M.J. Ablowitz, A.S. Fokas, On a Method of Solution for a Class of Multi-Dimensional Nonlinear Evolution Equations, Phys. Rev. Lett. 51, 7-10 (1983)

䍰 M.J. Ablowitz, A.S. Fokas, On the inverse scattering transform of multidimensional nonlinear evolution equations related to first order systems in the plane, J. Math Phys. 25 no 8 (1984), 2494-2505.
R.M. Brown, Estimates for the scattering map associated with a two-dimensional first-order system. J. Nonlinear Sci. 11, no. 6, 459-471 (2001)

目 R.M. Brown, G.A. Uhlmann, Communications in partial differential equations 22 (5-6), 1009-1027 (1997)

R R. Beals and R. Coifman, Multidimensional inverse scattering and nonlinear PDE Proc. Symp. Pure Math. (Providence: American Mathematical Society) 43, 45-70 (1985)

References II

图 A．S．Fokas，On the Inverse Scattering of First Order Systems in the Plane Related to Nonlinear Multidimensional Equations，Phys．Rev．Lett．51，3－6 （1983）
C．Klein，J．Sjöstrand，N．Stoilov，Large $|k|$ behavior of complex geometric optics solutions to d－bar problems，https：／／arxiv．org／abs／2009．06909
圊 C．Klein，J．Sjöstrand，N．Stoilov，Large $|k|$ behavior of d－bar problems for domains with a smooth boundary https：／／arxiv．org／abs／2010．04423
P．Perry，Global well－posedness and long－time asymptotics for the defocussing Davey－Stewartson II equation in $H^{1,1}(\mathbb{C})$ ，J．Spectr．Theory 6 （2016），no．3，429－481．
图 A．Nachman，I．Regev，D．Tataru，A nonlinear Plancherel theorem with applications to ．．．，arXiv：1708．04759．
凅 L．Y．Sung，An inverse scattering transform for the Davey－Stewartson equations．I，J．Math．Anal．Appl． 183 （1）（1994），121－154．

References III

國 L.Y. Sung, An inverse scattering transform for the Davey-Stewartson equations. II, J. Math. Anal. Appl. 183 (2) (1994), 289-325.

