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1. Introduction

1. Introduction

We will discuss some asymptotic questions for the ∂, ∂ problem of Dirac
type, on C ' R2: {

∂φ1 = q
2e

kz−kzφ2,

∂φ2 = σ q
2e

kz−kzφ1,
(1)

φ1(z) = 1 + o(1), φ2(z) = o(1), |z | → ∞. (2)

Here k ∈ C and q is a potential which is small near infinity,

∂ = ∂z =
1

2

(
∂

∂x
+

1

i

∂

∂y

)
, z = x + iy .

σ = +1 (defocusing case) or −1 (focusing case). Our asymptotic results
will be valid in both cases and from now on we take σ = 1.
Notice that |ekz−kz | = 1, so the exponential factors in (1) are oscillatory.
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1. Introduction

Assuming (1), (2) to have a unique solution, we have the reflection
coefficient R = R(k), defined by

R̄(k) =
2

π

∫
C
ekz−k̄ z̄ q̄(z)φ1(z ; k)L(dz), k ∈ C, (3)

where L(dz) ' (1/2i)dz ∧ dz is the Lebesgue measure on C.
The map q 7→ R is called the scattering transform.
The inverse scattering transform is then given by (1) and (2) after
replacing q by R and vice versa, the derivatives with respect to z by the
corresponding derivatives with respect to k , and asymptotic conditions for
k →∞ instead of z →∞.

3 / 34



1. Introduction

The system (1), (2) appears in the study of the Davey Stuartson II
equations

iqt + (qxx − qyy ) + 2(Φ + |q|2)q = 0,

Φxx + Φyy + 2(|q|2)xx = 0,
(4)

and also in electrical impedance tomography.
As q in (4) evolves in time t, the reflection coefficient evolves by a trivial
phase factor:

R(k ; t) = R(k , 0)e4it<(k2). (5)

The general structure, existence and uniqueness have been established by
[Fo83, AbFo83, AbFo84, BeCo85, Su94a, Su94b, BrUh97, Br01, Pe16,
NaReTa17]. Here we focus on the asymptotic behaviour when |k | → ∞.
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1. Introduction

Numerical calculations can be carried out in a bounded region in the
k-plane and it is then of interest to have asymptotic results for large k .

Plan of the talk:

The ∂ operator with polynomial weights; Carleman–Hörmander
approach.

The convergence of a perturbation series solution when |k | → ∞,
provided q ∈ 〈·〉−2Hs(C), 1 < s ≤ 2, or q = 1Ω where Ω b C is
strictly convex, ∂Ω ∈ C∞

The leading asymptotics of φ1, φ2 when q = 1Ω as above with ∂Ω
smooth.

Asymptotics of R(k) when q = 1Ω.

Some numerical illustrations.
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2. ∂ on C with polynomial weights.

2. ∂ on C with polynomial weights.

This is very classical (Carleman–Hörmander, method of positive
commutators).

Proposition

Let ε > 0. For every v ∈ 〈·〉ε−2L2, there exists u ∈ 〈·〉εL2 such that

∂u = v and ‖〈·〉−εu‖ ≤ ε−1/2‖〈·〉2−εv‖.

Proposition

When 0 < ε ≤ 1 the solution is unique and given by

u(z) =
1

π

∫
v(w)

z − w
L(dw).
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2. ∂ on C with polynomial weights.

Roughly, forgetting about the polynomial weights, we can say that

(h∂)−1 = O(1/h) : L2 → L2

Here 0 < h� 1.
This improves to O(1) after a suitable microlocalization to the elliptic
region, |(ξ, η)| ≥ 1/O(1).
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3. Application to the ∂, ∂ system

3. Application to the ∂, ∂ system

Let q ∈ 〈·〉−2Hs(C), 1 < s ≤ 2. Let k ∈ C with |k | � 1 and write

kz − kz =
i

h
<(zω), h =

1

|k|
, ω = 2i

k

|k|
.

Writing τ̂ωu = ekz−kzu (translation by ω on the h Fourier transform side),
the system (1) becomes{

h∂φ1 − τ̂−ωh q
2φ2 = 0,

h∂φ2 − τ̂ωh q
2φ1 = 0

(6)
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3. Application to the ∂, ∂ system

Let E = (h∂)−1, F = (h∂)−1,

K :=

(
0 E τ̂−ω

hq
2 ,

F τ̂ω
hq
2 0

)
=:

(
0 A
B 0

)
. (7)

Applying E and F to the two equations in (6) leads to the equivalent
system

(1−K)

(
φ1

φ2

)
=

(
0
0

)
, (8)

Trying φ0
1 = 1, φ0

2 = 0, gives an error to correct. We need to solve an
inhomogeneous system.

9 / 34



3. Application to the ∂, ∂ system

We see that K = O(1) : (〈·〉εL2)2 → (〈·〉εL2)2.

However K2 =

(
AB 0
0 BA

)
is much smaller, cf. Lemma 3.2 in [Pe16]:

Proposition

K2 = O(hs−1) : (〈·〉εL2)2 → (〈·〉εL2)2.

It follows that 1−K is bijective with inverse

(1−K2)−1(1 +K) =

(
(1− AB)−1 0

0 (1− BA)−1

)(
1 A
B 1

)
.

Idea of the proof.

K2 =

(
AB 0
0 BA

)
,

AB =
h2

4
E τ̂−ωqF τ̂ωq.
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3. Application to the ∂, ∂ system

Phase space localizations. Thanks to τ̂±ω, we are always in a region where
E = O(1) or F = O(1).

Proposition

When q = 1Ω for Ω b C strictly convex with smooth boundary, the
conclusion of the preceding proposition holds with s = 2.

(This is a recent improvement of the value s = 3/2.)
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3. Application to the ∂, ∂ system

Returning to (6), we write

φj = φ0
j + φ1

j , (φ0
1, φ

0
2) = (1, 0) (9)

and get

(1−K)

(
φ1

1

φ1
2

)
=

(
0

B(1)

)
= O(1) in 〈·〉εL2,

leading to

Theorem

(6) has the solution (9), where

φ1
1 = (1− AB)−1AB(1), (10)

φ1
2 = (1− BA)−1B(1). (11)

NB: φ1 = (1− AB)−1(1), φ2 = φ1
2.

12 / 34



4. The leading correction term when q = 1Ω.

4. The leading correction term when q = 1Ω.

Let q = 1Ω be as in the last proposition and let us study the leading term
in (11):

B(1) = F τ̂ω
hq

2
(z) =

1

2π

∫
Ω

1

z − w
ekw−kwL(dw) =:

1

2π
f (z , k), (12)

NB: A(1) = f (z , k)/(2π)

f (z , k) =

∫
Ω

1

z − w
ekw−kwL(dw) =

∫∫
Ω

ekw−kw

z − w

dw ∧ dw

2i
. (13)

Stokes’ formula (integration by parts) leads to

f (z , k) =
1

2ik

∫
∂Ω

1

z − w
ekw−kwdw + (π/k)ekz−kz1Ω(z) (14)
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4. The leading correction term when q = 1Ω.

Assume first also that
∂Ω is real analytic. (15)

Parametrize: t 7→ γ(t) ∈ ∂Ω, |γ̇(t)| = 1 with the positive orientation.
Let ν be the interior unit normal to ∂Ω, and let

w+ = w+(k) ∈ ∂Ω be the North pole where ν = cω, c < 0,

w− be the South pole where ν = cω, c > 0.

Let Γ+ be the open boundary segment from the South pole to the
North pole and Γ− the one from the North to the South.

w± are the critical points of kw − kw as a function on ∂Ω.
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4. The leading correction term when q = 1Ω.

Let iu(w , κ) be a holomorphic extension of kw − kw to neigh (∂Ω,C).
Applying the method of steepest descent, we replace ∂Ω in the integral in
(14) by a contour Γ, obtained by pushing Γ+ inwards and Γ− outwards:
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4. The leading correction term when q = 1Ω.

Define

F (z) = FΓ(z) =

∫
Γ

1

z − w
e−iu(w ,k)dw . (16)

From (14) and the residue theorem, we get for f = 2πA(1))

f (z , k) =

1

2ik
F (z) + (π/k)

(
e−iu(z,k)(1Ω−(z)− 1Ω+(z)) + e−i |k|<(zω)1Ω(z)

)
.

(17)

When z is not too close to w+ and w−, we can apply stationary phase –
steepest descent1, to see that F is equal to

F (z) =
√

2π

(
1

z − w+(k)
e−iu(w+(k),k)−iπ/4 γ̇(t+(k))

|∂2
t u(t+(k))|1/2

+
1

z − w−(k)
e−iu(w−(k),k)+iπ/4 γ̇(t−(k))

|∂2
t u(t−(k))|1/2

)
+O(〈z〉−1k−3/2).

(18)

1making a further deformation of Γ in order to avoid the pole at w = z , if necessary,
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4. The leading correction term when q = 1Ω.

When z is close to w+ or to w− we need to replace the corresponding
term in (18) by an expression in terms of the special function

G (z̃) =

∫
Γ̃

1

z̃ − w̃
e−w̃

2/2dw̃ . (19)

Combining this with (10), (11), leads to the following approximations for
φ1

2, φ1
1, where h = 1/|k|:

φ1
2 =

1

2k
e i |k|<(·ω)1Ω +O(1)h3/2(ln(1/h))1/2 in 〈·〉εL2, (20)

φ1
1 =

h

4k
E (1Ω) +O(1)h3/2(ln(1/h))1/2 in 〈·〉εL2. (21)

When ∂Ω is merely smooth, this still works with u(w , k) equal to an
almost holomorphic extension of u0 to neigh (∂Ω,C) .
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5. Asymptotics of the reflection coefficient

5. Asymptotics of the reflection coefficient

These results are still preliminary. Let O b C be open, strictly convex with
real-analytic boundary. Let q = 1Ω and take σ = 1 for simplicity. Let

DΩ(z) =
1

π

∫
Ω

1

z − w
L(dw) (22)

be the solution to the ∂-problem:{
∂zDΩ = 1Ω,

DΩ(z)→ 0, z →∞.
(23)

Example

DD(0,1)(z) =

{
z , |z | ≤ 1,

1/z , |z | ≥ 1.
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5. Asymptotics of the reflection coefficient

Theorem

DΩ is continuous, DΩ|Ω ∈ C∞(Ω), DΩ|C\Ω ∈ C∞(C \ Ω). Then

R =
2

π

∫
Ω
ekz−kzL(dz)

+
1

4iπ|k |2

(
−
∫

Γ̃
DΩ(w)e iu(w ,k)dw +

∫
Γ
DΩ(w)e−iu(w ,k)dw

)
+O(|k |−3 ln |k |),

(24)

When Ω = D(0, 1) is the unit disc, numerical computations indicate that

R ≈ Rasym :=
1√
πk3

(
sin(2k − π/4)− 5

16k
cos(2k − π/4)

)
, k → +∞, .

(25)
and that R − Rasym = O(|k |−7/2).
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5. Asymptotics of the reflection coefficient

Need to study AB where A, B are given in (7),

Au(z) =
1

2π

∫
Ω

1

z − w
e−kw+kwu(w)L(dw),

Bu(z) =
1

2π

∫
Ω

1

z − w
ekw−kwu(w)L(dw),

ABu(z) =

∫
Ω
K (z ,w)u(w)L(dw), (26)

K (z ,w) =
1

4π2

∫∫
Ω

ekζ

(z − ζ)

e−kζ

(ζ − w)

dζ ∧ dζ

2i
ekw−kw , (27)
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5. Asymptotics of the reflection coefficient

By partitions and integration by parts, we split K into several terms that
can be estimated and get,

Theorem

AB = O(1/|k |) :

{
Lq → Lq, 2 < q < +∞,
Lq → 〈·〉εLq, 1 < q ≤ 2, ε > 2

q − 1.
(28)

In particular, AB = O(1/|k|) : L2(Ω)→ L2(Ω).

Combining (3), (10) gives

R(k) =
2

π

∫
Ω
ekz−kz(1− AB)−1(1)L(dz)

=
∞∑
ν=0

2

π

∫
Ω
ekz−kz(AB)ν(1)L(dz)

(29)
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5. Asymptotics of the reflection coefficient

Define r = r(z , k) by

A(1Ω) =
1

2k
e−kz+kz1Ω + r(z , k), (30)

Comparing with (17), (16), we get

r =
F

4πik
− 1

2k
e−iu1Ω+ in Ω. (31)

We then get (cf (20)),

r(·, k) = O(1)|k|−3/2(ln |k |)1/2 in L2(Ω), (32)

r =
F

4πik
+
O(1) ln |k |
|k |2

= O(1)|k |−3/2 in L1(Ω), (33)

where F = F (z , k).
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5. Asymptotics of the reflection coefficient

Let 〈u|v〉 =
∫
uvL(dz) and write A = Ak . Then the transpose of Ak is

given by At
k = −e−k·+k·A−ke

−k·+k·

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz) =

2

π
〈B(1Ω)|Atek·−k·(1Ω)〉

= − 2

π
〈Bk(1Ω)|e−k·+k·A−k(1Ω)〉.

Using (30) and the fact that Bk(1Ω) = Ak(1Ω), we get

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz)

=
2

π

1

4|k |2

∫
Ω
ekz−kzL(dz)− 2

π

∫
Ω

1

2k
r(z ,−k)L(dz)

+
2

π

∫
Ω
r(z , k)

1

2k
L(dz)− 2

π

∫
Ω
e−kz+kz r(z , k)r(z ,−k)L(dz).

(34)

23 / 34



5. Asymptotics of the reflection coefficient

The 1st term in the right hand side is O(|k |−7/2). By (32) the last term is
O(|k|−3 ln |k|). Thus,

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz)

= − 2

π

∫
Ω

1

2k
r(z ,−k)L(dz) +

2

π

∫
Ω
r(z , k)

1

2k
L(dz) +O(|k|−3 ln |k|).

(35)

(33) now gives

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz) = O(|k|−5/2). (36)
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5. Asymptotics of the reflection coefficient

We shall next gain a power of k in the estimate of the general term in (29)
for ν ≥ 2:

2

π

∫
Ω
ekz−kz(AB)ν(1Ω)(z)L(dz) =

2

π

∫
Ω
ekz−kzA(BA)ν−1B(1Ω)(z)L(dz)

=
2

π
〈(BA)ν−1B(1Ω)|e−k·+k·A−k(1Ω)〉 = O(1)|k |1−ν |k |−1|k |−1

= O(|k|−ν−1) = O(|k |−3), (37)

since (BA)ν−1 = O(|k |1−ν) : L2(Ω)→ L2(Ω) and
B(1Ω), A−k(1Ω) = O(1/|k |) in L2(Ω).
Using this in (29), we get

R =
2

π

∫
Ω
ekz−kzL(dz) +

2

π

∫
Ω
ekz−kzAB(1Ω)L(dz) +O(|k |−3), (38)

and in particular,

R =
2

π

∫
Ω
ekz−kzL(dz) +O(|k |−5/2). (39)
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5. Asymptotics of the reflection coefficient

We next study the second term in the right hand side of (38), starting
from (35). Using (32), (33) in (35), we get

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz) =

2

π

∫
Ω

1

2k

F (z ,−k)

4iπk
L(dz) +

2

π

∫
Ω

F (z , k)

−4iπk

1

2k
L(dz) +O(|k |−3 ln |k |)

=
1

4iπ2|k |2

∫
Ω

(F (z ,−k)− F (z , k))L(dz) +O(|k |−3 ln |k |). (40)

Here∫
Ω
F (z ,−k)L(dz) =

∫
Ω

∫
Γ̃

1

z − w
e iu(w ,k)dwL(dz)

=

∫
Γ̃

∫
Ω

1

z − w
L(dz)e iu(w ,k)dw = −π

∫
Γ̃
DΩ(w)e iu(w ,k)dw , (41)

using that 1
z−w e iu(w ,k) is integrable on Ω× Γ̃ for the measure L(dz)|dw |.
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5. Asymptotics of the reflection coefficient

Similarly,

−
∫

Ω
F (z , k)L(dz) =

∫
Ω

∫
Γ

1

w − z
e−iu(w ,k)dwL(dz)

=

∫
Γ

∫
Ω

1

w − z
L(dz)e−iu(w ,k)dw = π

∫
Γ
DΩ(w)e−iu(w ,k)dw . (42)

Using (41), (42) in (40), we get

2

π

∫
Ω
ekz−kzAB(1Ω)(z)L(dz) =

1

4iπ|k|2

(
−
∫

Γ̃
DΩ(w)e iu(w ,k)dw +

∫
Γ
DΩ(w)e−iu(w ,k)dw

)
+O(|k |−3 ln |k |)

(43)

Using this in (38) gives (24).
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6. Numerics

6. Numerics

Figure: The solution φ2 for the characteristic function of the disk multiplied by k
for k = 10, 100, 1000 from left to right.
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6. Numerics

Figure: Difference between the solution φ2 for the characteristic function of the
disk and f /(2π) for k = 10, 100, 1000 from left to right.
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6. Numerics

Figure: Difference between the solution φ1 for the characteristic function of the
disk and 1 + z̄

4k multiplied by k2 for k = 10, 100, 1000 from left to right.
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6. Numerics
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Figure: Reflection coefficient for the characteristic function of the disk, on the left
R in blue and Rasym from (25) in red, both multiplied with k3/2, on the right the
difference between both multiplied with k7/2.
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