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1. Introduction

1. Introduction

We will discuss some asymptotic questions for the 0, 0 problem of Dirac

type, on C ~ R?:
J1 = Jeke—kz gy
{3¢2 ofekekeg,, @
$1(z) =1+ o(1), ¢2(z) = o(1), |z| — oo. (2)

Here k € C and g is a potential which is small near infinity,

P 1/0 n 10 Iy
=-|=—+==), z=x+1y.
i ox i9,)’ Y
o = +1 (defocusing case) or —1 (focusing case). Our asymptotic results

will be valid in both cases and from now on we take o =1
Notice that |eX*7%?| = 1, so the exponential factors in (1) are oscillatory

0=
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1. Introduction

Assuming (1), (2) to have a unique solution, we have the reflection
coefficient R = R(k), defined by

R(k) = i/cekz_;zc_](z)gbl(z; k)L(dz), k€ C, (3)

where L(dz) ~ (1/2i)dz A dz is the Lebesgue measure on C.

The map g — R is called the scattering transform.

The inverse scattering transform is then given by (1) and (2) after
replacing g by R and vice versa, the derivatives with respect to z by the
corresponding derivatives with respect to k, and asymptotic conditions for
k — oo instead of z — 0.
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1. Introduction

The system (1), (2) appears in the study of the Davey Stuartson |l
equations

ige + (Gxx — Gyy) +2(® +1q|*)g =0,

(4)
(Dxx *‘(Dyy + 2(|q|2)xx = 07

and also in electrical impedance tomography.
As q in (4) evolves in time t, the reflection coefficient evolves by a trivial
phase factor:

R(k;t) = R(k,0)e* (k). (5)

The general structure, existence and uniqueness have been established by
[Fo83, AbFo83, AbFo84, BeCo85, Su94a, Su94b, BrUh97, Br01, Pel6,
NaReTal7]. Here we focus on the asymptotic behaviour when |k| — 0.
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1. Introduction

Numerical calculations can be carried out in a bounded region in the
k-plane and it is then of interest to have asymptotic results for large k.

Plan of the talk:

The O operator with polynomial weights; Carleman—Hdrmander
approach.

The convergence of a perturbation series solution when |k| — o0,
provided g € (-)"2H%(C), 1 < s <2, or g = 1q where Q € C is
strictly convex, 9Q2 € C*

The leading asymptotics of ¢1, ¢ when g = 1q as above with 092
smooth.

Asymptotics of R(k) when g = 1q.

Some numerical illustrations.
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2. 8 on C with polynomial weights.

2. 0 on C with polynomial weights.

This is very classical (Carleman—H&rmander, method of positive
commutators).

Proposition
Let ¢ > 0. For every v € {-)*"2L2, there exists u € (-)°L? such that

du=v and ||()"ull < V2>V

Proposition

When 0 < ¢ < 1 the solution is unique and given by

u(z) = 1/V(W)L(dw).

™ zZ— W
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2. 8 on C with polynomial weights.

Roughly, forgetting about the polynomial weights, we can say that
(hd) L =0(1/h): 1% — I?

Here 0 < h < 1.
This improves to O(1) after a suitable microlocalization to the elliptic

region, |(§,n)] > 1/0(1).

7/34



3. Application to the &, & system

3. Application to the 0,0 system

Let g € (-)72H%(C), 1 < s < 2. Let k € C with |k| > 1 and write

— i 1 k
kz — kz = —R(zw), h= —, w =2i—.
h || I

szﬁu (

Writing T,u = e translation by w on the h Fourier transform side),

the system (1) becomes

{haqzsl — 7 whldy =0, ©)

hd¢r — Tuhddy =0
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3. Application to the &, & system

Let E = (hd)~1, F = (h9) 1,

B 0 EF.M\ [0 A
(2 T o

Applying E and F to the two equations in (6) leads to the equivalent

system
o-n(2)-)

Trying ¢§ =1, ¢3 = 0, gives an error to correct. We need to solve an
inhomogeneous system.
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3. Application to the 9, ) system

We see that KK = O(1) : ((-)°L?)? — ({-)L?)>.

However K2 = <AB is much smaller, cf. Lemma 3.2 in [Pel6]:

0
0 BA

Proposition
K2 = O(h1) : ()12 — (()°L2)2 J

It follows that 1 — /C is bijective with inverse

(1-K)H1+K) = <(1 B 6\8)1 (1- ,(;A)—1> <é ?> '

Idea of the proof.
AB 0
2 _
K= ( 0 BA) ’
2

h
AB = 7 E7_,qF7.q.
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3. Application to the &, & system

Phase space localizations. Thanks to 74, we are always in a region where

E=0(1)or F=0(1).
Proposition

When q = 1q for Q &€ C strictly convex with smooth boundary, the
conclusion of the preceding proposition holds with s = 2.

(This is a recent improvement of the value s = 3/2.)

11/34



3. Application to the 9, ) system

Returning to (6), we write

oj =Y+ o5, (43,09) = (1,0)

-5 () = (a0y) —0Wn 022

and get

leading to

Theorem

(6) has the solution (9), where
o1 = (1— AB)AB(1),
¢3 = (1— BA)1B(1).
NB: ¢1 = (1 — AB)"Y(1), ¢2 = ¢3.
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4. The leading correction term when g = 1q.

4. The leading correction term when g = 1q.

Let g = 1o be as in the last proposition and let us study the leading term
in (11):

— = fﬁ? _ 41, 444}447 kw—kw .=
B(1) = F7, > (z) = 27r/Qz—We L(dw) =: 27Tf(z, k), (12)

NB: A(1) = f(z, k)/(2m)

kW kw
f(z, k) :/ R =W [ (dw) // dWA W (13)
Q0Z— w’ z—w

Stokes' formula (integration by parts) leads to

1 1 = — I
F k kw—kwd k kz—kzl 14
(k) = oz [ e e (x/R)1az) (14
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4. The leading correction term when g = 1q.

Assume first also that
0S1 is real analytic. (15)

Parametrize: t +— (t) € 0, |¥(t)| = 1 with the positive orientation.
Let v be the interior unit normal to 92, and let

o wy = wy (k) € 09 be the North pole where v = cw, ¢ <0,

@ w_ be the South pole where v = cw, ¢ > 0.

@ Let ' be the open boundary segment from the South pole to the
North pole and I'_ the one from the North to the South.

w. are the critical points of kw — kw as a function on 9.
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4. The leading correction term when g = 1q.

Let iu(w, x) be a holomorphic extension of kw — kw to neigh (9, C).
Applying the method of steepest descent, we replace 02 in the integral in
(14) by a contour I, obtained by pushing ' inwards and '_ outwards:

Wy

[ 0

+

15/34



4. The leading correction term when g = 1q.

Define )

F(z) = Fr(z) = /r — We””(""’k)dw. (16)
From (14) and the residue theorem, we get for f = 27w A(1))
f(z, k) =

SZF@)+ (7 /k) (e*f“(27k>(197(z) —1g,(2)) + e*"lkm(zmlg(z)) : (17)

When z is not too close to w, and w_, we can apply stationary phase —
steepest descent!, to see that F is equal to

B 1 —iu(wy Jk)—iT ’Y(t (k))
P =V (g O Gt
1 —iu(w_ im y(t—(k
ROl (we(k),k)+ /4|8$Z(:((k))))|1/2> (18)

(
+0((z2)7rk73/?).

!making a further deformation of I in order to avoid the pole:at w = z, if necessary;
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4. The leading correction term when g = 1q.

When z is close to wy or to w_ we need to replace the corresponding
term in (18) by an expression in terms of the special function

c;(z)z/F L gy (19)

zZ—w

Combining this with (10), (11), leads to the following approximations for
¢%, qﬁ%, where h = 1/|k|:

ol = %e’.‘km(w)lg 4 O(l)h3/2(|n(1/h))1/2 in (-)¢L2, (20)

61 = 1 E(1a) + OQ)R(In(1/m) in ()12 (21)

When 0% is merely smooth, this still works with u(w, k) equal to an
almost holomorphic extension of up to neigh (092, C) .
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5. Asymptotics of the reflection coefficient

5. Asymptotics of the reflection coefficient

These results are still preliminary. Let O € C be open, strictly convex with
real-analytic boundary. Let g = 1g and take o0 = 1 for simplicity. Let

m zZ— W

Do(z) = & /Q L (dw) (22)

be the solution to the O-problem:

{aEDQ = 1g, (23)

Dq(z) — 0, z — oc.
Example
z, |z| <1,
D z) =
p(0,1)(2) {1/27 2] > 1.
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5. Asymptotics of the reflection coefficient

Theorem

Dq is continuous, Dq|,, € C>=(Q), DQ|C\§ € C®(C\ Q). Then

™

1 ; - (24)
—— (= | D iu(w,k) /D —iu(w,k)
+ 2P ( /F a(w)e dw + g o(w)e dw

+O(lk| 7 In k),

— 2 =
R== / e’ 1 (dz)
Q

When Q = D(0, 1) is the unit disc, numerical computations indicate that

1
R ~ Rasym = \/ﬁ

and that R — Rasym = O(|k|77/?).

(sin(2k —m/4) — 1Z—kcos(2k - 7r/4)> , k= +o0,.
(25)
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5. Asymptotics of the reflection coefficient

Need to study AB where A, B are given in (7),

L L —kwtw

Bu(z) = 1/ %ekw*mu(W)L(dW),

2 JqZ — W

ABu(z) = /K(z w)u(w)L(dw), (26)

e™ ¢ dCAdC - v
(2.w) = 72 // z—o e (27)
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5. Asymptotics of the reflection coefficient

By partitions and integration by parts, we split K into several terms that
can be estimated and get,

Theorem
L9 — L9, 2 < g < +oo,
AB = O(1/|k]) : . 5 (28)
L9 — (-)eL9, 1<g<2 e>%5-1
In particular, AB = O(1/|k|) : L2(Q) — L3(%).

Combining (3), (10) gives

R(k) = i/ﬂekz—kz(l—AB)_l(l)L(dz)

_ - g ekz—E v >
=30 [ e W)
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Define r = r(z, k) by

1 R
A(lg) = E(sz+k219 + r(z, k),

Comparing with (17), (16), we get
F 1
r = —_ — =
4mik 2k
We then get (cf (20)),

—iu

lg, in Q.

(- k) = O 7>2(In k)2 in 12(Q),

P F O1)In|k|
 4wik k|2
where F = F(z, k).

= O(1)[k| % in L}(9),

(30)

(31)

(32)
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5. Asymptotics of the reflection coefficient

Let (ulv) = [ uvL(dz) and write A = A. Then the transpose of Ay is
given by A?{ = _e—k~+k-A_ke_k.+k.

[ = EAB(a) (o)L (dz) = 2 (B(1a) A'e ¥ (1a)
™ JQ ™
_ _%<Bk(19)|e—k'+FA,k(1Q)>.

Using (30) and the fact that Bx(1q) = Ak(1lq), we get

2 kz—kz
7T/Qe AB(10)(2)L(dz)

:72r4|i’2/ﬂekz—kzL(dz)_:_/Qzlkr(z,—k)L(dZ) (34)
+ 2 [P - 2 [ e R L)
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5. Asymptotics of the reflection coefficient

The 1st term in the right hand side is O(|k|~7/2). By (32) the last term is
O(|k|=3In|k|). Thus,

2/ e AB(10)(2)L(dz)
T Ja
:_2/ 21/< (z, k)L(dz)+72r/Qr(Z, )lk L(dz) + O(|k| 7> In |K]).
(35)
(33) now gives
2 / =R AB(10)(2)L(dz) = O(|K|~5/2). (36)
T Ja
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5. Asymptotics of the reflection coefficient

We shall next gain a power of k in the estimate of the general term in (29)
for v > 2:

2 / R (AB)(10)(2)L(dz) = > / ek A(BA) 1 B(1a)(2)L(d?)
Q Q

= %<(BA)”’1B(ln)le’k*@\—k(ln)) = O(1) k"7 [k|7H &I
= O(Ik[™ 1) = O(IK7%), (37)

since (BA)" "1 = O(|k|*7") : L2(Q) — L%(Q) and
B(1a), A_k(1a) = O(1/|K]) in L2(Q).
Using this in (29), we get

R [ e+ [ o aBua) e + oK), (39

s s

and in particular,

R=2 / R [ (dz) + O(|k|*/2). (39)
T Ja



5. Asymptotics of the reflection coefficient

We next study the second term in the right hand side of (38), starting
from (35). Using (32), (33) in (35), we get

2 kz—kz _
/Qe AB(1a)(2)L(dz) =

s

2 [ 1F(z,—k) 2 [ F(z,k) 1 .
) ok i Hd+ =L k[~31n |k
m /Q 2k 4imk (d2) + 7T/Q —4ditk 2k (dz) + O([k[™" In |kl)

1 £ -
= W/Q(F(z,—k)—F(z, k))L(dz) + O(|k| > In|k]). (40)

Here

/ F(z,—k)L(dz) = / /~ Lef“(wﬂde(dz)
Q QJTZ— W
= /~ / L1 (dz)e "R = / Do(w)e™ ™R dw, (41)
rJoz—w r

using that ﬁe"u(w*) is integrable on Q x T for the measure L(dz)|dw|.
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5. Asymptotics of the reflection coefficient

Similarly,

—_— 1 )
— | F(z,k)L(dz) = / /e—’“(va)dWL dz
| e = [ [ (d)
1 ) .
:// L(dz)e"”(W’k)dW:w/ Dq(w)e~t(w.K)dw. (42)
rJQ r

w—Zz

Using (41), (42) in (40), we get

™

2 ekz—kz z z) =
/Q AB(1g)(2)L(dz)

1 : .
—— —%DQ(W)e’”(va)dW+ / DQ(W)e—Iu(WJ()dW +O(‘k|73|n ‘k|)
4ir|k|? F r

(43)

Using this in (38) gives (24).
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6. Numerics

6. Numerics

Figure: The solution ¢, for the characteristic function of the disk multiplied by k
for k = 10,100, 1000 from left to right.
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6. Numerics

»107

Figure: Difference between the solution ¢, for the characteristic function of the
disk and f/(27) for k = 10,100, 1000 from left to right.
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6. Numerics

Figure: Difference between the solution ¢; for the characteristic function of the
disk and 1 + 7z multiplied by k? for k = 10,100, 1000 from left to right.
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6. Numerics
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Figure: Reflection coefficient for the characteristic function of the disk, on the left
R in blue and R,sym from (25) in red, both multiplied with k3/2 on the right the
difference between both multiplied with k7/2.
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